distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3394
  • Accuracy: {'accuracy': 0.867}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.5972 {'accuracy': 0.871}
0.3494 2.0 500 0.6138 {'accuracy': 0.867}
0.3494 3.0 750 0.8990 {'accuracy': 0.862}
0.176 4.0 1000 1.1045 {'accuracy': 0.865}
0.176 5.0 1250 1.1309 {'accuracy': 0.874}
0.0495 6.0 1500 1.1944 {'accuracy': 0.877}
0.0495 7.0 1750 1.3032 {'accuracy': 0.87}
0.0199 8.0 2000 1.2579 {'accuracy': 0.875}
0.0199 9.0 2250 1.2924 {'accuracy': 0.87}
0.0102 10.0 2500 1.3394 {'accuracy': 0.867}

Framework versions

  • PEFT 0.17.1
  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for borjinipun/distilbert-base-uncased-lora-text-classification

Adapter
(348)
this model

Evaluation results