Nitro-E 512px Lite - Fast Decoding Variant
This is the Nitro-E 512px text-to-image diffusion model with DC-AE-Lite for faster image decoding.
Key Features
- ๐ 1.8ร Faster Decoding: Uses DC-AE-Lite instead of standard DC-AE
- ๐ฏ Same Quality: Similar reconstruction quality to standard DC-AE
- โก Drop-in Compatible: Uses the same Nitro-E transformer weights
- ๐พ Memory Efficient: Smaller decoder footprint
Performance Comparison
| VAE Variant | Decoding Speed | Quality |
|---|---|---|
| DC-AE (Standard) | 1.0ร | Reference |
| DC-AE-Lite | 1.8ร | Similar |
This makes Nitro-E even faster for real-time applications!
Model Details
- Transformer: Nitro-E 512px (304M parameters)
- VAE: DC-AE-Lite-f32c32 (faster decoder)
- Text Encoder: Llama-3.2-1B
- Scheduler: Flow Matching with Euler Discrete
- Attention: Alternating Subregion Attention (ASA)
Usage
import torch
from diffusers import NitroEPipeline
# Load the lite variant
pipe = NitroEPipeline.from_pretrained(
"blanchon/nitro_e_512_lite",
torch_dtype=torch.bfloat16
)
pipe.to("cuda")
# Generate image (1.8x faster decoding!)
prompt = "A hot air balloon in the shape of a heart grand canyon"
image = pipe(
prompt=prompt,
width=512,
height=512,
num_inference_steps=20,
guidance_scale=4.5,
).images[0]
image.save("output.png")
When to Use This Variant
Use DC-AE-Lite (this model) when:
- You need faster inference
- Running real-time applications
- Batch processing many images
- Decoding is your bottleneck
Use standard DC-AE when:
- You need absolute best reconstruction quality
- Decoding speed is not critical
Technical Details
Architecture
- Type: E-MMDiT (Efficient Multi-scale Masked Diffusion Transformer)
- Attention: Alternating Subregion Attention (ASA)
- Text Encoder: Llama-3.2-1B
- VAE: DC-AE-Lite-f32c32 (1.8ร faster decoding)
- Scheduler: Flow Matching with Euler Discrete Scheduler
- Latent Size: 16ร16 for 512ร512 images
Recommended Settings
- Steps: 20 (good quality/speed trade-off)
- Guidance Scale: 4.5 (balanced)
- Resolution: 512ร512 (optimized)
Citation
@article{nitro-e-2025,
title={Nitro-E: Efficient Training of Diffusion Models},
author={AMD AI Group},
journal={arXiv preprint arXiv:2510.27135},
year={2025}
}
License
Copyright (c) 2025 Advanced Micro Devices, Inc. All Rights Reserved.
Licensed under the MIT License.
Related Models
- Downloads last month
- 18
Model tree for blanchon/nitro_e_512_lite
Base model
amd/Nitro-E