Nitro-E 512px Lite - Fast Decoding Variant

This is the Nitro-E 512px text-to-image diffusion model with DC-AE-Lite for faster image decoding.

Key Features

  • ๐Ÿš€ 1.8ร— Faster Decoding: Uses DC-AE-Lite instead of standard DC-AE
  • ๐ŸŽฏ Same Quality: Similar reconstruction quality to standard DC-AE
  • โšก Drop-in Compatible: Uses the same Nitro-E transformer weights
  • ๐Ÿ’พ Memory Efficient: Smaller decoder footprint

Performance Comparison

VAE Variant Decoding Speed Quality
DC-AE (Standard) 1.0ร— Reference
DC-AE-Lite 1.8ร— Similar

This makes Nitro-E even faster for real-time applications!

Model Details

  • Transformer: Nitro-E 512px (304M parameters)
  • VAE: DC-AE-Lite-f32c32 (faster decoder)
  • Text Encoder: Llama-3.2-1B
  • Scheduler: Flow Matching with Euler Discrete
  • Attention: Alternating Subregion Attention (ASA)

Usage

import torch
from diffusers import NitroEPipeline

# Load the lite variant
pipe = NitroEPipeline.from_pretrained(
    "blanchon/nitro_e_512_lite",
    torch_dtype=torch.bfloat16
)
pipe.to("cuda")

# Generate image (1.8x faster decoding!)
prompt = "A hot air balloon in the shape of a heart grand canyon"
image = pipe(
    prompt=prompt,
    width=512,
    height=512,
    num_inference_steps=20,
    guidance_scale=4.5,
).images[0]

image.save("output.png")

When to Use This Variant

Use DC-AE-Lite (this model) when:

  • You need faster inference
  • Running real-time applications
  • Batch processing many images
  • Decoding is your bottleneck

Use standard DC-AE when:

  • You need absolute best reconstruction quality
  • Decoding speed is not critical

Technical Details

Architecture

  • Type: E-MMDiT (Efficient Multi-scale Masked Diffusion Transformer)
  • Attention: Alternating Subregion Attention (ASA)
  • Text Encoder: Llama-3.2-1B
  • VAE: DC-AE-Lite-f32c32 (1.8ร— faster decoding)
  • Scheduler: Flow Matching with Euler Discrete Scheduler
  • Latent Size: 16ร—16 for 512ร—512 images

Recommended Settings

  • Steps: 20 (good quality/speed trade-off)
  • Guidance Scale: 4.5 (balanced)
  • Resolution: 512ร—512 (optimized)

Citation

@article{nitro-e-2025,
  title={Nitro-E: Efficient Training of Diffusion Models},
  author={AMD AI Group},
  journal={arXiv preprint arXiv:2510.27135},
  year={2025}
}

License

Copyright (c) 2025 Advanced Micro Devices, Inc. All Rights Reserved.

Licensed under the MIT License.

Related Models

Downloads last month
18
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for blanchon/nitro_e_512_lite

Base model

amd/Nitro-E
Finetuned
(3)
this model