100epoch_test_march19
This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3000
- Precision: 0.9344
- Recall: 0.9317
- F1: 0.9331
- Accuracy: 0.9725
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall |
|---|---|---|---|---|---|---|---|
| No log | 0.7937 | 100 | 0.9349 | 0.8465 | 0.2505 | 0.8337 | 0.8596 |
| No log | 1.5873 | 200 | 0.9581 | 0.8996 | 0.1602 | 0.8918 | 0.9075 |
| No log | 2.3810 | 300 | 0.9663 | 0.9162 | 0.1457 | 0.8993 | 0.9336 |
| No log | 3.1746 | 400 | 0.9682 | 0.9204 | 0.1426 | 0.9291 | 0.9119 |
| 0.2582 | 3.9683 | 500 | 0.9675 | 0.9205 | 0.1340 | 0.9289 | 0.9123 |
| 0.2582 | 4.7619 | 600 | 0.9714 | 0.9300 | 0.1387 | 0.9318 | 0.9281 |
| 0.2582 | 5.5556 | 700 | 0.9702 | 0.9284 | 0.1456 | 0.9283 | 0.9285 |
| 0.2582 | 6.3492 | 800 | 0.9696 | 0.9247 | 0.1438 | 0.9278 | 0.9216 |
| 0.2582 | 7.1429 | 900 | 0.9687 | 0.9218 | 0.1592 | 0.9349 | 0.9090 |
| 0.0527 | 7.9365 | 1000 | 0.9714 | 0.9280 | 0.1470 | 0.9255 | 0.9306 |
| 0.0527 | 8.7302 | 1100 | 0.9706 | 0.9286 | 0.1570 | 0.9322 | 0.9250 |
| 0.0527 | 9.5238 | 1200 | 0.9718 | 0.9301 | 0.1627 | 0.9295 | 0.9308 |
| 0.0527 | 10.3175 | 1300 | 0.9687 | 0.9215 | 0.1997 | 0.9200 | 0.9229 |
| 0.0527 | 11.1111 | 1400 | 0.9723 | 0.9330 | 0.1864 | 0.9296 | 0.9365 |
| 0.0296 | 11.9048 | 1500 | 0.9699 | 0.9249 | 0.1912 | 0.9277 | 0.9222 |
| 0.0296 | 12.6984 | 1600 | 0.9710 | 0.9282 | 0.1834 | 0.9288 | 0.9277 |
| 0.0296 | 13.4921 | 1700 | 0.9696 | 0.9264 | 0.2040 | 0.9275 | 0.9252 |
| 0.0296 | 14.2857 | 1800 | 0.9686 | 0.9260 | 0.2004 | 0.9315 | 0.9207 |
| 0.0296 | 15.0794 | 1900 | 0.9689 | 0.9229 | 0.1982 | 0.9233 | 0.9226 |
| 0.0182 | 15.8730 | 2000 | 0.9700 | 0.9262 | 0.2130 | 0.9259 | 0.9266 |
| 0.0182 | 16.6667 | 2100 | 0.9708 | 0.9274 | 0.1958 | 0.9297 | 0.9252 |
| 0.0182 | 17.4603 | 2200 | 0.9693 | 0.9233 | 0.2237 | 0.9298 | 0.9168 |
| 0.0182 | 18.2540 | 2300 | 0.9691 | 0.9245 | 0.2224 | 0.9276 | 0.9214 |
| 0.0182 | 19.0476 | 2400 | 0.9728 | 0.9333 | 0.2082 | 0.9359 | 0.9308 |
| 0.0138 | 19.8413 | 2500 | 0.9709 | 0.9284 | 0.2172 | 0.9267 | 0.9302 |
| 0.0138 | 20.6349 | 2600 | 0.9718 | 0.9313 | 0.1997 | 0.9347 | 0.9279 |
| 0.0138 | 21.4286 | 2700 | 0.9687 | 0.9240 | 0.2395 | 0.9297 | 0.9184 |
| 0.0138 | 22.2222 | 2800 | 0.9698 | 0.9254 | 0.2342 | 0.9251 | 0.9256 |
| 0.0138 | 23.0159 | 2900 | 0.9709 | 0.9281 | 0.2079 | 0.9311 | 0.9250 |
| 0.0092 | 23.8095 | 3000 | 0.9693 | 0.9245 | 0.2388 | 0.9219 | 0.9271 |
| 0.0092 | 24.6032 | 3100 | 0.9687 | 0.9237 | 0.2426 | 0.9190 | 0.9285 |
| 0.0092 | 25.3968 | 3200 | 0.9706 | 0.9268 | 0.2179 | 0.9299 | 0.9237 |
| 0.0092 | 26.1905 | 3300 | 0.9704 | 0.9259 | 0.2348 | 0.9278 | 0.9241 |
| 0.0092 | 26.9841 | 3400 | 0.9696 | 0.9257 | 0.2414 | 0.9323 | 0.9191 |
| 0.0062 | 27.7778 | 3500 | 0.9693 | 0.9244 | 0.2320 | 0.9232 | 0.9256 |
| 0.0062 | 28.5714 | 3600 | 0.9700 | 0.9246 | 0.2327 | 0.9227 | 0.9266 |
| 0.0062 | 29.3651 | 3700 | 0.9691 | 0.9245 | 0.2459 | 0.9232 | 0.9258 |
| 0.0062 | 30.1587 | 3800 | 0.9709 | 0.9279 | 0.2185 | 0.9304 | 0.9254 |
| 0.0062 | 30.9524 | 3900 | 0.9719 | 0.9290 | 0.2355 | 0.9305 | 0.9275 |
| 0.0045 | 31.7460 | 4000 | 0.9725 | 0.9316 | 0.2271 | 0.9324 | 0.9308 |
| 0.0045 | 32.5397 | 4100 | 0.9710 | 0.9270 | 0.2464 | 0.9265 | 0.9275 |
| 0.0045 | 33.3333 | 4200 | 0.9693 | 0.9253 | 0.2522 | 0.9254 | 0.9252 |
| 0.0045 | 34.1270 | 4300 | 0.9693 | 0.9259 | 0.2315 | 0.9217 | 0.9300 |
| 0.0045 | 34.9206 | 4400 | 0.9700 | 0.9258 | 0.2301 | 0.9261 | 0.9254 |
| 0.0039 | 35.7143 | 4500 | 0.9694 | 0.9242 | 0.2511 | 0.9291 | 0.9193 |
| 0.0039 | 36.5079 | 4600 | 0.9690 | 0.9236 | 0.2425 | 0.9232 | 0.9241 |
| 0.0039 | 37.3016 | 4700 | 0.9664 | 0.9167 | 0.2968 | 0.9257 | 0.9079 |
| 0.0039 | 38.0952 | 4800 | 0.9684 | 0.9223 | 0.2725 | 0.9201 | 0.9245 |
| 0.0039 | 38.8889 | 4900 | 0.9690 | 0.9225 | 0.2881 | 0.9252 | 0.9199 |
| 0.0032 | 39.6825 | 5000 | 0.9678 | 0.9240 | 0.2804 | 0.9231 | 0.9249 |
| 0.0032 | 40.4762 | 5100 | 0.9687 | 0.9248 | 0.2689 | 0.9297 | 0.9201 |
| 0.0032 | 41.2698 | 5200 | 0.9706 | 0.9276 | 0.2727 | 0.9256 | 0.9296 |
| 0.0032 | 42.0635 | 5300 | 0.9714 | 0.9293 | 0.2650 | 0.9299 | 0.9287 |
| 0.0032 | 42.8571 | 5400 | 0.9699 | 0.9261 | 0.2633 | 0.9292 | 0.9231 |
| 0.003 | 43.6508 | 5500 | 0.9710 | 0.9289 | 0.2668 | 0.9327 | 0.9250 |
| 0.003 | 44.4444 | 5600 | 0.9701 | 0.9281 | 0.2654 | 0.9314 | 0.9249 |
| 0.003 | 45.2381 | 5700 | 0.9704 | 0.9275 | 0.2701 | 0.9351 | 0.9201 |
| 0.003 | 46.0317 | 5800 | 0.9730 | 0.9332 | 0.2541 | 0.9329 | 0.9334 |
| 0.003 | 46.8254 | 5900 | 0.9715 | 0.9298 | 0.2486 | 0.9310 | 0.9287 |
| 0.0026 | 47.6190 | 6000 | 0.9726 | 0.9318 | 0.2248 | 0.9392 | 0.9245 |
| 0.0026 | 48.4127 | 6100 | 0.9716 | 0.9305 | 0.2562 | 0.9297 | 0.9313 |
| 0.0026 | 49.2063 | 6200 | 0.9730 | 0.9341 | 0.2648 | 0.9345 | 0.9336 |
| 0.0026 | 50.0 | 6300 | 0.9714 | 0.9296 | 0.2561 | 0.9308 | 0.9285 |
| 0.0026 | 50.7937 | 6400 | 0.9733 | 0.9331 | 0.2531 | 0.9359 | 0.9304 |
| 0.0014 | 51.5873 | 6500 | 0.9712 | 0.9290 | 0.2676 | 0.9356 | 0.9226 |
| 0.0014 | 52.3810 | 6600 | 0.9680 | 0.9204 | 0.2842 | 0.9276 | 0.9134 |
| 0.0014 | 53.1746 | 6700 | 0.9717 | 0.9311 | 0.2731 | 0.9274 | 0.9350 |
| 0.0014 | 53.9683 | 6800 | 0.9719 | 0.9306 | 0.2665 | 0.9319 | 0.9292 |
| 0.0014 | 54.7619 | 6900 | 0.9719 | 0.9307 | 0.2690 | 0.9294 | 0.9319 |
| 0.0017 | 55.5556 | 7000 | 0.9727 | 0.9319 | 0.2668 | 0.9326 | 0.9311 |
| 0.0017 | 56.3492 | 7100 | 0.9707 | 0.9268 | 0.2867 | 0.9219 | 0.9317 |
| 0.0017 | 57.1429 | 7200 | 0.9721 | 0.9324 | 0.2771 | 0.9306 | 0.9342 |
| 0.0017 | 57.9365 | 7300 | 0.9723 | 0.9336 | 0.2570 | 0.9372 | 0.9300 |
| 0.0017 | 58.7302 | 7400 | 0.9735 | 0.9348 | 0.2649 | 0.9363 | 0.9332 |
| 0.0008 | 59.5238 | 7500 | 0.9724 | 0.9327 | 0.2780 | 0.9325 | 0.9329 |
| 0.0008 | 60.3175 | 7600 | 0.9706 | 0.9270 | 0.2728 | 0.9263 | 0.9277 |
| 0.0008 | 61.1111 | 7700 | 0.9718 | 0.9315 | 0.2703 | 0.9268 | 0.9363 |
| 0.0008 | 61.9048 | 7800 | 0.9715 | 0.9297 | 0.2799 | 0.9288 | 0.9306 |
| 0.0008 | 62.6984 | 7900 | 0.9709 | 0.9275 | 0.2793 | 0.9233 | 0.9317 |
| 0.0018 | 63.4921 | 8000 | 0.9716 | 0.9296 | 0.2685 | 0.9271 | 0.9321 |
| 0.0018 | 64.2857 | 8100 | 0.9715 | 0.9301 | 0.2779 | 0.9293 | 0.9308 |
| 0.0018 | 65.0794 | 8200 | 0.9725 | 0.9316 | 0.2849 | 0.9314 | 0.9319 |
| 0.0018 | 65.8730 | 8300 | 0.9712 | 0.9291 | 0.2952 | 0.9246 | 0.9336 |
| 0.0018 | 66.6667 | 8400 | 0.9717 | 0.9308 | 0.2932 | 0.9250 | 0.9367 |
| 0.0008 | 67.4603 | 8500 | 0.9727 | 0.9320 | 0.2614 | 0.9339 | 0.9300 |
| 0.0008 | 68.2540 | 8600 | 0.9723 | 0.9305 | 0.2751 | 0.9311 | 0.9300 |
| 0.0008 | 69.0476 | 8700 | 0.9724 | 0.9306 | 0.2829 | 0.9351 | 0.9262 |
| 0.0008 | 69.8413 | 8800 | 0.9726 | 0.9318 | 0.2835 | 0.9294 | 0.9342 |
| 0.0008 | 70.6349 | 8900 | 0.9720 | 0.9302 | 0.2687 | 0.9284 | 0.9321 |
| 0.0007 | 71.4286 | 9000 | 0.9718 | 0.9291 | 0.2631 | 0.9294 | 0.9289 |
| 0.0007 | 72.2222 | 9100 | 0.9727 | 0.9316 | 0.2608 | 0.9324 | 0.9308 |
| 0.0007 | 73.0159 | 9200 | 0.9728 | 0.9329 | 0.2705 | 0.9307 | 0.9352 |
| 0.0007 | 73.8095 | 9300 | 0.9724 | 0.9319 | 0.2822 | 0.9288 | 0.9350 |
| 0.0007 | 74.6032 | 9400 | 0.9739 | 0.9351 | 0.2753 | 0.9361 | 0.9340 |
| 0.0006 | 75.3968 | 9500 | 0.9719 | 0.9304 | 0.2880 | 0.9329 | 0.9279 |
| 0.0006 | 76.1905 | 9600 | 0.9726 | 0.9314 | 0.2954 | 0.9290 | 0.9338 |
| 0.0006 | 76.9841 | 9700 | 0.9731 | 0.9334 | 0.2967 | 0.9343 | 0.9325 |
| 0.0006 | 77.7778 | 9800 | 0.9733 | 0.9339 | 0.3013 | 0.9327 | 0.9352 |
| 0.0006 | 78.5714 | 9900 | 0.9740 | 0.9355 | 0.2980 | 0.9360 | 0.9350 |
| 0.0002 | 79.3651 | 10000 | 0.9735 | 0.9344 | 0.3020 | 0.9334 | 0.9353 |
| 0.0002 | 80.1587 | 10100 | 0.2857 | 0.9368 | 0.9357 | 0.9363 | 0.9736 |
| 0.0002 | 80.9524 | 10200 | 0.2948 | 0.9214 | 0.9346 | 0.9279 | 0.9712 |
| 0.0002 | 81.7460 | 10300 | 0.2918 | 0.9285 | 0.9270 | 0.9277 | 0.9711 |
| 0.0002 | 82.5397 | 10400 | 0.2947 | 0.9268 | 0.9323 | 0.9295 | 0.9718 |
| 0.0003 | 83.3333 | 10500 | 0.2976 | 0.9300 | 0.9323 | 0.9311 | 0.9724 |
| 0.0003 | 84.1270 | 10600 | 0.2980 | 0.9302 | 0.9310 | 0.9306 | 0.9722 |
| 0.0003 | 84.9206 | 10700 | 0.2978 | 0.9310 | 0.9344 | 0.9327 | 0.9729 |
| 0.0003 | 85.7143 | 10800 | 0.2882 | 0.9318 | 0.9327 | 0.9322 | 0.9727 |
| 0.0003 | 86.5079 | 10900 | 0.2918 | 0.9314 | 0.9319 | 0.9316 | 0.9725 |
| 0.0003 | 87.3016 | 11000 | 0.2932 | 0.9305 | 0.9325 | 0.9315 | 0.9724 |
| 0.0003 | 88.0952 | 11100 | 0.2964 | 0.9305 | 0.9323 | 0.9314 | 0.9723 |
| 0.0003 | 88.8889 | 11200 | 0.3069 | 0.9307 | 0.9294 | 0.9301 | 0.9716 |
| 0.0003 | 89.6825 | 11300 | 0.3022 | 0.9309 | 0.9321 | 0.9315 | 0.9724 |
| 0.0003 | 90.4762 | 11400 | 0.3088 | 0.9330 | 0.9289 | 0.9309 | 0.9715 |
| 0.0002 | 91.2698 | 11500 | 0.3008 | 0.9323 | 0.9292 | 0.9307 | 0.9715 |
| 0.0002 | 92.0635 | 11600 | 0.3019 | 0.9314 | 0.9304 | 0.9309 | 0.9723 |
| 0.0002 | 92.8571 | 11700 | 0.3039 | 0.9309 | 0.9302 | 0.9305 | 0.9721 |
| 0.0002 | 93.6508 | 11800 | 0.3017 | 0.9345 | 0.9287 | 0.9316 | 0.9722 |
| 0.0002 | 94.4444 | 11900 | 0.2980 | 0.9340 | 0.9311 | 0.9326 | 0.9724 |
| 0.0003 | 95.2381 | 12000 | 0.2973 | 0.9346 | 0.9302 | 0.9324 | 0.9725 |
| 0.0003 | 96.0317 | 12100 | 0.2981 | 0.9345 | 0.9304 | 0.9324 | 0.9724 |
| 0.0003 | 96.8254 | 12200 | 0.2990 | 0.9337 | 0.9292 | 0.9315 | 0.9721 |
| 0.0003 | 97.6190 | 12300 | 0.2993 | 0.9337 | 0.9298 | 0.9318 | 0.9721 |
| 0.0003 | 98.4127 | 12400 | 0.2993 | 0.9343 | 0.9310 | 0.9326 | 0.9724 |
| 0.0001 | 99.2063 | 12500 | 0.2998 | 0.9340 | 0.9315 | 0.9328 | 0.9724 |
| 0.0001 | 100.0 | 12600 | 0.3000 | 0.9344 | 0.9317 | 0.9331 | 0.9725 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 9
Model tree for bashyaldhiraj2067/100epoch_test_march19
Base model
nielsr/lilt-xlm-roberta-base