nomic-embed-indonesian
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 specifically for Indonesian language text embedding tasks. It maps Indonesian sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
🚀 Quick Start
from sentence_transformers import SentenceTransformer
# Load the model (requires trust_remote_code=True)
model = SentenceTransformer("asmud/nomic-embed-indonesian", trust_remote_code=True)
# Indonesian text examples
texts = [
"search_query: Apa itu kecerdasan buatan?",
"search_document: Kecerdasan buatan adalah teknologi yang memungkinkan mesin belajar",
"classification: Produk ini sangat berkualitas (sentimen: positif)"
]
# Generate embeddings
embeddings = model.encode(texts)
print(f"Embedding shape: {embeddings.shape}") # (3, 768)
🇮🇩 Specialized for Indonesian Language
This model is optimized for Indonesian text understanding across multiple domains including:
- Technology (Teknologi) - AI, gadgets, digital innovation
- Politics (Politik) - Government, elections, public policy
- Law (Hukum) - Legal affairs, crime, justice
- Economy (Ekonomi) - Business, finance, trade
- Education (Pendidikan) - Academic, learning, research
- Health (Kesehatan) - Medical, wellness, healthcare
- Sports (Olahraga) - Athletics, competitions, fitness
- Culture (Budaya) - Literature, arts, traditions
- And more...
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NomicBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
⚠️ Important: This model requires trust_remote_code=True due to custom model architecture.
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("asmud/nomic-embed-indonesian", trust_remote_code=True)
# Run inference with Indonesian text
sentences = [
'search_query: Apa itu kecerdasan buatan?',
'search_document: Kecerdasan buatan adalah teknologi yang memungkinkan mesin belajar dari data',
'classification: Produk ini sangat berkualitas dan sesuai harapan (sentimen: positif)',
'clustering: makanan tradisional Indonesia seperti rendang dan gudeg',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7154, 0.7378],
# [0.7154, 1.0000, 0.6583],
# [0.7378, 0.6583, 1.0000]])
Evaluation
Metrics
Semantic Similarity
- Dataset:
indonesian-diversity-eval - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.4358 |
| spearman_cosine | 0.2857 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,294 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 8 tokens
- mean: 20.45 tokens
- max: 181 tokens
- min: 7 tokens
- mean: 117.93 tokens
- max: 508 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
sentence_0 sentence_1 label clustering: artikel berita Indonesiaclustering: Paris Saint - Germain gagal mempertahankan status tak terkalahkan di Ligue 1 Prancis , setelah dipaksa menelan kekalahan perdana musim ini kala menyambangi Strasbourg . Tanda - tanda kurang maksimalnya performa klub ibukota Prancis ini sudah terlihat di awal pertandingan . Lini belakang gagal mengantisipasi skema tendangan bebas Strasbourg sehingga umpan Dimitri Lienard diteruskan dengan mudah oleh Nuno Da Costa pada menit ke - 13 untuk mencetak gol pembuka . Skuat asuhan Unai Emery langsung bermain agresif untuk mengejar ketertinggalan , mengandalkan trio Neymar , Kylian Mbappe dan Angel Di Maria . Nama terakhir mendapat kesempatan pada menit ke - 39 usai menerima umpan terobosan dari Neymar , tetapi sayang sepakannya gagal menemui sasaran meski sudah tidak dapat diantisipasi kiper . Mbappe akhirnya yang sukses mencatatkan namanya di papan skor . Mantan pemain Monaco itu menyambar umpan tarik Rabiot di dalam kotak penalti pada menit ke - 42 untuk membuat skor sama kuat . B...1.0search_query: KPK resmi menetapkan Ketua DPR Setya Novanto sebagsearch_document: KPK resmi menetapkan Ketua DPR Setya Novanto sebagai tersangka kasus korupsi pengadaan proyek e - KTP . Penetapan status tersangka yang kedua kalinya ini disampaikan Wakil Ketua KPK Saut Situmorang . Novanto dijerat dengan Pasal 2 ayat 1 subsider Pasal 3 Undang-Undang Nomor 31 tahun 1999 sebagaimana diubah dengan Undang-Undang Nomor 20 tahun 2001 tentang Pemberantasan Korupsi juncto Pasal 55 ayat 1 ke - 1 KUHP .1.0search_query: Google memperkenalkan laptop chromebook kelas atasclassification: ga da wifi d lantai 2,kamar mandi ga da gantungan handuk or baju,over all bagus,n recomended (sentimen: positif)0.0 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 1per_device_eval_batch_size: 1num_train_epochs: 1multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 1per_device_eval_batch_size: 1per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | indonesian-diversity-eval_spearman_cosine |
|---|---|---|---|
| 0.0794 | 500 | 0.0 | - |
| 0.1589 | 1000 | 0.0 | - |
| 0.2383 | 1500 | 0.0 | - |
| 0.3178 | 2000 | 0.0 | - |
| 0.3972 | 2500 | 0.0 | - |
| 0.4766 | 3000 | 0.0 | - |
| 0.5561 | 3500 | 0.0 | - |
| 0.6355 | 4000 | 0.0 | - |
| 0.7150 | 4500 | 0.0 | - |
| 0.7944 | 5000 | 0.0 | - |
| 0.8738 | 5500 | 0.0 | - |
| 0.9533 | 6000 | 0.0 | - |
| 1.0 | 6294 | - | 0.2857 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.54.1
- PyTorch: 2.7.1
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 147
Model tree for asmud/nomic-embed-indonesian
Evaluation results
- Pearson Cosine on indonesian diversity evalself-reported0.436
- Spearman Cosine on indonesian diversity evalself-reported0.286