See axolotl config
axolotl version: 0.4.0
# Weights and Biases logging config
#wandb_project: llama3-15B-zeroed-aethora
#wandb_entity:
#wandb_watch: all
#wandb_name:
#wandb_log_model:
# MLFlow
mlflow_tracking_uri: http://127.0.0.1:8888
mlflow_experiment_name: Default
hf_mlflow_log_artifacts: false
# Model architecture config
base_model: elinas/Llama-3-15B-Instruct-zeroed
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Hugging Face saving config
hub_model_id: elinas/Aethora-15B-v2-QLoRA
hub_strategy: every_save
push_dataset_to_hub:
hf_use_auth_token: true
# Model checkpointing config
output_dir: Aethora-15B-v2-QLoRA
resume_from_checkpoint:
save_steps:
saves_per_epoch: 2
save_safetensors: true
save_total_limit: 2
# Mixed precision training config
bf16: true
fp16: false
tf32: false
# Model loading config
load_in_8bit: false
load_in_4bit: true
strict: false
# Sequence config
sequence_len: 8192
s2_attention: false
sample_packing: true # false
eval_sample_packing: false # true
pad_to_sequence_len: true # false
train_on_inputs: false
group_by_length: false
# QLoRA adapter config
adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out:
lora_target_linear:
save_embedding_layers:
peft_layers_to_transform:
peft_use_dora:
peft_use_rslora:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
- embed_tokens
- lm_head
# Unfrozen parameters for FFT
unfrozen_parameters:
# Dataset config
# Dataset config
datasets:
- path: TheSkullery/Aether-Lite-v1.8.1
type: customllama3
val_set_size: 0.10
evaluation_strategy: steps
eval_steps: 200
evals_per_epoch:
test_datasets:
dataset_prepared_path: last_run_prepared
shuffle_merged_datasets: true
# Training hyperparameters
num_epochs: 4
gradient_accumulation_steps: 8
micro_batch_size: 2
warmup_steps: 10
optimizer: paged_adamw_8bit # adamw_bnb_8bit # paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0001
loraplus_lr_ratio: 8
loraplus_lr_embedding:
cosine_min_lr_ratio: 0.1
weight_decay: 0.05
max_grad_norm: 1.0
logging_steps: 1
# Model optimization / unsloth ---- INSTALL UNSLOTH
gradient_checkpointing: unsloth
unsloth_cross_entropy_loss: true
unsloth_lora_mlp: true
unsloth_lora_qkv: true
unsloth_lora_o: true
xformers_attention: false
flash_attention: true
sdp_attention: false
# Loss monitoring config
early_stopping_patience: false
loss_watchdog_threshold: 100.0
loss_watchdog_patience: 3
# Debug config
debug: true
seed: 6969 # 42
# DeepSpeed config
#deepspeed: deepspeed_configs/zero3_bf16.json
# deepspeed: deepspeed_configs/zero3_bf16_optimized.json
# Token config
special_tokens:
bos_token: "<|begin_of_text|>"
eos_token: "<|end_of_text|>"
pad_token: "<|end_of_text|>"
tokens:
# Don't mess with this, it's here for accelerate and torchrun
local_rank:
Aethora-15B-v2-QLoRA
This model is a fine-tuned version of elinas/Llama-3-15B-Instruct-zeroed on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1942
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 6969
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.7015 | 0.0067 | 1 | 1.7614 |
| 1.2247 | 1.3244 | 200 | 1.2017 |
| 1.2301 | 2.6480 | 400 | 1.1942 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for ZeusLabs/Aethora-15B-v2-QLoRA
Base model
meta-llama/Meta-Llama-3-8B-Instruct
Finetuned
elinas/Llama-3-15B-Instruct-zeroed