WILFRID β€” #1 8B Model on MELD (0.6607 Weighted F1)

The highest-performing 8B model ever on the MELD emotion recognition benchmark.

Results (Test Set)

Emotion Precision Recall F1 Support
anger 0.6736 0.4725 0.5554 345
disgust 0.3768 0.3824 0.3796 68
fear 0.3571 0.1000 0.1562 50
joy 0.6921 0.5423 0.6081 402
neutral 0.7130 0.9156 0.8017 1256
sadness 0.6447 0.2356 0.3451 208
surprise 0.6263 0.6263 0.6263 281
accuracy 0.6847 2610
weighted F1 0.6607

Trained in ~80 minutes on a single RTX 5090 using 4-bit QLoRA.

Quick Inference Example

from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("Wilfrid28/llama3-meld-wilfrid", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("Wilfrid28/llama3-meld-wilfrid")

prompt = """Conversation:
Ross: We were on a break!
Rachel: No we weren't!

Current turn:
Ross: WE WERE ON A BREAK!!
Emotion (one word):"""

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
output = model.generate(**inputs, max_new_tokens=5, temperature=0.1)
emotion = tokenizer.decode(output[0], skip_special_tokens=True).split()[-1]
print(emotion)  # β†’ anger


### Live Demo
**Try the Emotion Oracle Dashboard**: https://huggingface.co/spaces/Wilfrid28/wilfrid-oracle

The most beautiful emotion detection interface ever built.
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for Wilfrid28/llama3-meld-wilfrid

Finetuned
(855)
this model

Space using Wilfrid28/llama3-meld-wilfrid 1