bert-finetuned-ner
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0870
- Precision: 0.9061
- Recall: 0.9254
- F1: 0.9157
- Accuracy: 0.9824
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.216 | 1.0 | 1250 | 0.1314 | 0.8038 | 0.8714 | 0.8362 | 0.9699 |
| 0.1001 | 2.0 | 2500 | 0.0932 | 0.8790 | 0.9061 | 0.8924 | 0.9784 |
| 0.0656 | 3.0 | 3750 | 0.0844 | 0.8813 | 0.9145 | 0.8976 | 0.9793 |
| 0.0506 | 4.0 | 5000 | 0.0885 | 0.8915 | 0.9261 | 0.9085 | 0.9799 |
| 0.0397 | 5.0 | 6250 | 0.0823 | 0.8969 | 0.9251 | 0.9108 | 0.9815 |
| 0.0307 | 6.0 | 7500 | 0.0826 | 0.8974 | 0.9246 | 0.9108 | 0.9813 |
| 0.0249 | 7.0 | 8750 | 0.0840 | 0.8985 | 0.9238 | 0.9110 | 0.9815 |
| 0.0207 | 8.0 | 10000 | 0.0846 | 0.9088 | 0.9238 | 0.9162 | 0.9824 |
| 0.0169 | 9.0 | 11250 | 0.0857 | 0.9022 | 0.9254 | 0.9137 | 0.9820 |
| 0.0158 | 10.0 | 12500 | 0.0870 | 0.9061 | 0.9254 | 0.9157 | 0.9824 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Model tree for TabAnd58/bert-finetuned-ner
Base model
BAAI/bge-small-en-v1.5