Improve model card: Add pipeline tag, library name, and enrich content
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
language:
|
| 4 |
- en
|
|
|
|
| 5 |
tags:
|
| 6 |
- reinforcement-learning
|
| 7 |
- planning
|
|
@@ -11,6 +11,8 @@ tags:
|
|
| 11 |
- llada
|
| 12 |
size_categories:
|
| 13 |
- 8B
|
|
|
|
|
|
|
| 14 |
---
|
| 15 |
|
| 16 |
# LLaDA-8B-BGPO-countdown
|
|
@@ -24,27 +26,61 @@ size_categories:
|
|
| 24 |
|
| 25 |
## Model Details
|
| 26 |
|
| 27 |
-
-
|
| 28 |
-
-
|
| 29 |
-
-
|
| 30 |
-
-
|
| 31 |
-
-
|
| 32 |
-
-
|
| 33 |
|
| 34 |
## Training Details
|
| 35 |
|
| 36 |
-
-
|
| 37 |
-
-
|
| 38 |
-
-
|
| 39 |
-
-
|
| 40 |
-
-
|
| 41 |
-
-
|
| 42 |
-
-
|
| 43 |
-
-
|
| 44 |
-
-
|
| 45 |
|
| 46 |
## Usage & Limitations
|
| 47 |
|
| 48 |
-
-
|
| 49 |
-
-
|
| 50 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
tags:
|
| 6 |
- reinforcement-learning
|
| 7 |
- planning
|
|
|
|
| 11 |
- llada
|
| 12 |
size_categories:
|
| 13 |
- 8B
|
| 14 |
+
pipeline_tag: text-generation
|
| 15 |
+
library_name: transformers
|
| 16 |
---
|
| 17 |
|
| 18 |
# LLaDA-8B-BGPO-countdown
|
|
|
|
| 26 |
|
| 27 |
## Model Details
|
| 28 |
|
| 29 |
+
- **Model Type**: Diffusion Large Language Model (dLLM)
|
| 30 |
+
- **Parameters**: 8 billion
|
| 31 |
+
- **Training Method**: Boundary-Guided Policy Optimization (BGPO)
|
| 32 |
+
- **Base Model**: LLaDA-8B-Instruct
|
| 33 |
+
- **Task**: Countdown
|
| 34 |
+
- **Language**: English
|
| 35 |
|
| 36 |
## Training Details
|
| 37 |
|
| 38 |
+
- **Training Steps**: 560 steps
|
| 39 |
+
- **Response Length**: 256 tokens
|
| 40 |
+
- **Train Diffusion Steps**: 128
|
| 41 |
+
- **Eval Diffusion Steps**: 256
|
| 42 |
+
- **Block Size**: 32
|
| 43 |
+
- **Monte Carlo Sample Size ($n_t$)**: 16
|
| 44 |
+
- **Learning Rate**: 5e-7
|
| 45 |
+
- **Batch Size**: 16
|
| 46 |
+
- **Framework**: Built on VeRL (Volcengine Reinforcement Learning)
|
| 47 |
|
| 48 |
## Usage & Limitations
|
| 49 |
|
| 50 |
+
- Primarily designed for countdown tasks.
|
| 51 |
+
- Performance may vary on other tasks.
|
| 52 |
+
- Requires appropriate computational resources for inference.
|
| 53 |
+
|
| 54 |
+
## Performance
|
| 55 |
+
|
| 56 |
+
1. **Overall Performance**: BGPO vs. baselines on mathematics, coding, and planning tasks
|
| 57 |
+

|
| 58 |
+
|
| 59 |
+
2. **Monte Carlo Analysis**: Performance with different sampling sizes $n_t$
|
| 60 |
+

|
| 61 |
+
|
| 62 |
+
3. **Out-of-Domain**: Generalization performance (<span style="color: #939393">gray</span> = in-domain)
|
| 63 |
+

|
| 64 |
+
|
| 65 |
+
## Acknowledgments
|
| 66 |
+
|
| 67 |
+
We thank the open-source community for their valuable contributions, particularly:
|
| 68 |
+
- [VeRL](https://github.com/volcengine/verl) for the RL framework
|
| 69 |
+
- [HuggingFace](https://huggingface.co/) for model hosting
|
| 70 |
+
- The research community for their feedback and suggestions
|
| 71 |
+
|
| 72 |
+
## Citation
|
| 73 |
+
|
| 74 |
+
If you find our work useful, please consider citing our paper:
|
| 75 |
+
|
| 76 |
+
```bibtex
|
| 77 |
+
@misc{lin2025boundaryguidedpolicyoptimizationmemoryefficient,
|
| 78 |
+
title={Boundary-Guided Policy Optimization for Memory-efficient RL of Diffusion Large Language Models},
|
| 79 |
+
author={Nianyi Lin and Jiajie Zhang and Lei Hou and Juanzi Li},
|
| 80 |
+
year={2025},
|
| 81 |
+
eprint={2510.11683},
|
| 82 |
+
archivePrefix={arXiv},
|
| 83 |
+
primaryClass={cs.LG},
|
| 84 |
+
url={https://arxiv.org/abs/2510.11683},
|
| 85 |
+
}
|
| 86 |
+
```
|