Crow-v1
Collection
3 items
•
Updated
This is a sentence-transformers model finetuned from Shuu12121/CodeModernBERT-Crow-v1.1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The toggle content, if left empty it will render the default toggle (seen above).',
"function NavbarToggle() {\n\t (0, _classCallCheck3['default'])(this, NavbarToggle);\n\t return (0, _possibleConstructorReturn3['default'])(this, _React$Component.apply(this, arguments));\n\t }",
"update = () => {\n\n\t const timerId = window.requestAnimationFrame( update );\n\t const elapsed = performance.now() - timestamp;\n\t const progress = elapsed / duration;\n\t const opacity = 1.0 - progress > 0 ? 1.0 - progress : 0;\n\t const radius = progress * canvasWidth * 0.5 / dpr;\n\n\t context.clearRect( 0, 0, canvasWidth, canvasHeight );\n\t context.beginPath();\n\t context.arc( x, y, radius, 0, Math.PI * 2 );\n\t context.fillStyle = `rgba(${color.r * 255}, ${color.g * 255}, ${color.b * 255}, ${opacity})`;\n\t context.fill();\n\t context.closePath();\n\n\t if ( progress >= 1.0 ) {\n\n\t window.cancelAnimationFrame( timerId );\n\t this.updateCanvasArcByProgress( 0 );\n\n\t /**\n\t * Reticle ripple end event\n\t * @type {object}\n\t * @event Reticle#reticle-ripple-end\n\t */\n\t this.dispatchEvent( { type: 'reticle-ripple-end' } );\n\n\t }\n\n\t material.map.needsUpdate = true;\n\n\t }",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.6778, -0.0447],
# [ 0.6778, 1.0000, 0.0303],
# [-0.0447, 0.0303, 1.0000]])
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
Set the column title |
setHeader = function(column, newValue) { |
1.0 |
Elsewhere this is known as a "Weak Value Map". Whereas a std JS WeakMap |
makeFinalizingMap = (finalizer, opts) => { |
1.0 |
Creates a function that memoizes the result of |
function memoize(func, resolver) { |
1.0 |
CachedMultipleNegativesSymmetricRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 128,
"gather_across_devices": false
}
per_device_train_batch_size: 2048per_device_eval_batch_size: 2048fp16: Truemulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 2048per_device_eval_batch_size: 2048per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss |
|---|---|---|
| 0.4281 | 500 | 0.3784 |
| 0.8562 | 1000 | 0.1367 |
| 1.2842 | 1500 | 0.0707 |
| 1.7123 | 2000 | 0.0456 |
| 2.1404 | 2500 | 0.0344 |
| 2.5685 | 3000 | 0.0143 |
| 2.9966 | 3500 | 0.0136 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
Shuu12121/CodeModernBERT-Crow-v1-Pre