SentenceTransformer based on Shuu12121/CodeModernBERT-Crow-v1.1

This is a sentence-transformers model finetuned from Shuu12121/CodeModernBERT-Crow-v1.1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Shuu12121/CodeModernBERT-Crow-v1.1
  • Maximum Sequence Length: 1024 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'The toggle content, if left empty it will render the default toggle (seen above).',
    "function NavbarToggle() {\n\t    (0, _classCallCheck3['default'])(this, NavbarToggle);\n\t    return (0, _possibleConstructorReturn3['default'])(this, _React$Component.apply(this, arguments));\n\t  }",
    "update = () => {\n\n\t            const timerId = window.requestAnimationFrame( update );\n\t            const elapsed = performance.now() - timestamp;\n\t            const progress = elapsed / duration;\n\t            const opacity = 1.0 - progress > 0 ? 1.0 - progress : 0;\n\t            const radius = progress * canvasWidth * 0.5 / dpr;\n\n\t            context.clearRect( 0, 0, canvasWidth, canvasHeight );\n\t            context.beginPath();\n\t            context.arc( x, y, radius, 0, Math.PI * 2 );\n\t            context.fillStyle = `rgba(${color.r * 255}, ${color.g * 255}, ${color.b * 255}, ${opacity})`;\n\t            context.fill();\n\t            context.closePath();\n\n\t            if ( progress >= 1.0 ) {\n\n\t                window.cancelAnimationFrame( timerId );\n\t                this.updateCanvasArcByProgress( 0 );\n\n\t                /**\n\t                 * Reticle ripple end event\n\t                 * @type {object}\n\t                 * @event Reticle#reticle-ripple-end\n\t                 */\n\t                this.dispatchEvent( { type: 'reticle-ripple-end' } );\n\n\t            }\n\n\t            material.map.needsUpdate = true;\n\n\t        }",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.6778, -0.0447],
#         [ 0.6778,  1.0000,  0.0303],
#         [-0.0447,  0.0303,  1.0000]])

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,392,064 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 8 tokens
    • mean: 74.35 tokens
    • max: 1024 tokens
    • min: 11 tokens
    • mean: 182.37 tokens
    • max: 1024 tokens
    • min: 1.0
    • mean: 1.0
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    Set the column title

    @param column - column number (first column is: 0)
    @param title - new column title
    setHeader = function(column, newValue) {
    const obj = this;

    if (obj.headers[column]) {
    const oldValue = obj.headers[column].textContent;
    const onchangeheaderOldValue = (obj.options.columns && obj.options.columns[column] && obj.options.columns[column].title) || '';

    if (! newValue) {
    newValue = getColumnName(column);
    }

    obj.headers[column].textContent = newValue;
    // Keep the title property
    obj.headers[column].setAttribute('title', newValue);
    // Update title
    if (!obj.options.columns) {
    obj.options.columns = [];
    }
    if (!obj.options.columns[column]) {
    obj.options.columns[column] = {};
    }
    obj.options.columns[column].title = newValue;

    setHistory.call(obj, {
    action: 'setHeader',
    column: column,
    oldValue: oldValue,
    newValue: newValue
    });

    // On onchange header
    dispatch.c...
    1.0
    Elsewhere this is known as a "Weak Value Map". Whereas a std JS WeakMap
    is weak on its keys, this map is weak on its values. It does not retain these
    values strongly. If a given value disappears, then the entries for it
    disappear from every weak-value-map that holds it as a value.

    Just as a WeakMap only allows gc-able values as keys, a weak-value-map
    only allows gc-able values as values.

    Unlike a WeakMap, a weak-value-map unavoidably exposes the non-determinism of
    gc to its clients. Thus, both the ability to create one, as well as each
    created one, must be treated as dangerous capabilities that must be closely
    held. A program with access to these can read side channels though gc that do
    not* rely on the ability to measure duration. This is a separate, and bad,
    timing-independent side channel.

    This non-determinism also enables code to escape deterministic replay. In a
    blockchain context, this could cause validators to differ from each other,
    preventing consensus, and thus preventing ...
    makeFinalizingMap = (finalizer, opts) => {
    const { weakValues = false } = opts || {};
    if (!weakValues || !WeakRef || !FinalizationRegistry) {
    /** @type Map /
    const keyToVal = new Map();
    return Far('fakeFinalizingMap', {
    clearWithoutFinalizing: keyToVal.clear.bind(keyToVal),
    get: keyToVal.get.bind(keyToVal),
    has: keyToVal.has.bind(keyToVal),
    set: (key, val) => {
    keyToVal.set(key, val);
    },
    delete: keyToVal.delete.bind(keyToVal),
    getSize: () => keyToVal.size,
    });
    }
    /
    * @type Map> */
    const keyToRef = new Map();
    const registry = new FinalizationRegistry(key => {
    // Because this will delete the current binding of key, we need to
    // be sure that it is not called because a previous binding was collected.
    // We do this with the unregister in set below, assuming that
    // unregister immediately suppresses the finalization of the thing
    // it unregisters. TODO If this is...
    1.0
    Creates a function that memoizes the result of func. If resolver is
    provided, it determines the cache key for storing the result based on the
    arguments provided to the memoized function. By default, the first argument
    provided to the memoized function is used as the map cache key. The func
    is invoked with the this binding of the memoized function.

    Note: The cache is exposed as the cache property on the memoized
    function. Its creation may be customized by replacing the _.memoize.Cache
    constructor with one whose instances implement the
    Map
    method interface of delete, get, has, and set.

    @static
    @memberOf _
    @since 0.1.0
    @category Function
    @param {Function} func The function to have its output memoized.
    @param {Function} [resolver] The function to resolve the cache key.
    @returns {Function} Returns the new memoized function.
    @example

    var object = { 'a': 1, 'b': 2 };
    var othe...
    function memoize(func, resolver) {
    if (typeof func != 'function' || (resolver && typeof resolver != 'function')) {
    throw new TypeError(FUNC_ERROR_TEXT);
    }
    var memoized = function() {
    var args = arguments,
    key = resolver ? resolver.apply(this, args) : args[0],
    cache = memoized.cache;

    if (cache.has(key)) {
    return cache.get(key);
    }
    var result = func.apply(this, args);
    memoized.cache = cache.set(key, result);
    return result;
    };
    memoized.cache = new (memoize.Cache || MapCache);
    return memoized;
    }
    1.0
  • Loss: CachedMultipleNegativesSymmetricRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "mini_batch_size": 128,
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 2048
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 2048
  • per_device_eval_batch_size: 2048
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss
0.4281 500 0.3784
0.8562 1000 0.1367
1.2842 1500 0.0707
1.7123 2000 0.0456
2.1404 2500 0.0344
2.5685 3000 0.0143
2.9966 3500 0.0136

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 5.1.0
  • Transformers: 4.55.3
  • PyTorch: 2.7.0+cu128
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
16
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Shuu12121/CodeSearch-ModernBERT-Crow-v1.1-Plus

Space using Shuu12121/CodeSearch-ModernBERT-Crow-v1.1-Plus 1

Collection including Shuu12121/CodeSearch-ModernBERT-Crow-v1.1-Plus