dts_ESLO.06.05.25_exp.ft.dia.1.A_mdl.no3

This model is a fine-tuned version of pyannote/segmentation-3.0 on the CAENNAIS dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7585
  • Model Preparation Time: 0.0041
  • Der: 0.4608
  • False Alarm: 0.1507
  • Missed Detection: 0.2148
  • Confusion: 0.0953

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Der False Alarm Missed Detection Confusion
0.8687 1.0 270 0.8091 0.0041 0.5159 0.1392 0.2577 0.1191
0.8156 2.0 540 0.7667 0.0041 0.4795 0.1447 0.2335 0.1013
0.7847 3.0 810 0.7597 0.0041 0.4837 0.1635 0.2073 0.1128
0.7595 4.0 1080 0.7597 0.0041 0.4760 0.1684 0.1995 0.1082
0.7789 5.0 1350 0.7471 0.0041 0.4709 0.1506 0.2250 0.0952
0.7656 6.0 1620 0.7597 0.0041 0.4730 0.1545 0.2184 0.1002
0.7307 7.0 1890 0.7614 0.0041 0.4688 0.1451 0.2308 0.0929
0.7318 8.0 2160 0.7588 0.0041 0.4690 0.1537 0.2131 0.1021
0.7115 9.0 2430 0.7555 0.0041 0.4636 0.1648 0.1932 0.1056
0.7258 10.0 2700 0.7594 0.0041 0.4743 0.1596 0.2074 0.1073
0.7144 11.0 2970 0.7679 0.0041 0.4713 0.1348 0.2435 0.0930
0.7214 12.0 3240 0.7462 0.0041 0.4617 0.1497 0.2158 0.0962
0.6578 13.0 3510 0.7601 0.0041 0.4654 0.1474 0.2219 0.0961
0.6909 14.0 3780 0.7701 0.0041 0.4620 0.1459 0.2236 0.0925
0.6775 15.0 4050 0.7600 0.0041 0.4637 0.1507 0.2154 0.0976
0.6771 16.0 4320 0.7552 0.0041 0.4607 0.1533 0.2089 0.0985
0.69 17.0 4590 0.7577 0.0041 0.4643 0.1497 0.2188 0.0958
0.6816 18.0 4860 0.7570 0.0041 0.4620 0.1503 0.2160 0.0957
0.6924 19.0 5130 0.7587 0.0041 0.4606 0.1507 0.2151 0.0948
0.7091 20.0 5400 0.7585 0.0041 0.4608 0.1507 0.2148 0.0953

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
-
Safetensors
Model size
1.47M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Rziane/dts_ESLO.06.05.25_exp.ft.dia.1.A_mdl.no3

Finetuned
(85)
this model