|
|
---
|
|
|
language:
|
|
|
- pt
|
|
|
license: apache-2.0
|
|
|
tags:
|
|
|
- automatic-speech-recognition
|
|
|
- hf-asr-leaderboard
|
|
|
- mozilla-foundation/common_voice_8_0
|
|
|
- pt
|
|
|
- robust-speech-event
|
|
|
datasets:
|
|
|
- mozilla-foundation/common_voice_8_0
|
|
|
model-index:
|
|
|
- name: XLS-R Wav2Vec2 Portuguese by Jonatas Grosman
|
|
|
results:
|
|
|
- task:
|
|
|
name: Automatic Speech Recognition
|
|
|
type: automatic-speech-recognition
|
|
|
dataset:
|
|
|
name: Common Voice 8
|
|
|
type: mozilla-foundation/common_voice_8_0
|
|
|
args: pt
|
|
|
metrics:
|
|
|
- name: Test WER
|
|
|
type: wer
|
|
|
value: 8.7
|
|
|
- name: Test CER
|
|
|
type: cer
|
|
|
value: 2.55
|
|
|
- name: Test WER (+LM)
|
|
|
type: wer
|
|
|
value: 6.04
|
|
|
- name: Test CER (+LM)
|
|
|
type: cer
|
|
|
value: 1.98
|
|
|
- task:
|
|
|
name: Automatic Speech Recognition
|
|
|
type: automatic-speech-recognition
|
|
|
dataset:
|
|
|
name: Robust Speech Event - Dev Data
|
|
|
type: speech-recognition-community-v2/dev_data
|
|
|
args: pt
|
|
|
metrics:
|
|
|
- name: Dev WER
|
|
|
type: wer
|
|
|
value: 24.23
|
|
|
- name: Dev CER
|
|
|
type: cer
|
|
|
value: 11.3
|
|
|
- name: Dev WER (+LM)
|
|
|
type: wer
|
|
|
value: 19.41
|
|
|
- name: Dev CER (+LM)
|
|
|
type: cer
|
|
|
value: 10.19
|
|
|
- task:
|
|
|
name: Automatic Speech Recognition
|
|
|
type: automatic-speech-recognition
|
|
|
dataset:
|
|
|
name: Robust Speech Event - Test Data
|
|
|
type: speech-recognition-community-v2/eval_data
|
|
|
args: pt
|
|
|
metrics:
|
|
|
- name: Test WER
|
|
|
type: wer
|
|
|
value: 18.8
|
|
|
---
|
|
|
|
|
|
# Fine-tuned XLS-R 1B model for speech recognition in Portuguese
|
|
|
|
|
|
Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Portuguese using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [CORAA](https://github.com/nilc-nlp/CORAA), [Multilingual TEDx](http://www.openslr.org/100), and [Multilingual LibriSpeech](https://www.openslr.org/94/).
|
|
|
When using this model, make sure that your speech input is sampled at 16kHz.
|
|
|
|
|
|
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
|
|
|
|
|
|
## Usage
|
|
|
|
|
|
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
|
|
|
|
|
|
```python
|
|
|
from huggingsound import SpeechRecognitionModel
|
|
|
|
|
|
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-portuguese")
|
|
|
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
|
|
|
|
|
|
transcriptions = model.transcribe(audio_paths)
|
|
|
```
|
|
|
|
|
|
Writing your own inference script:
|
|
|
|
|
|
```python
|
|
|
import torch
|
|
|
import librosa
|
|
|
from datasets import load_dataset
|
|
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
|
|
|
LANG_ID = "pt"
|
|
|
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-portuguese"
|
|
|
SAMPLES = 10
|
|
|
|
|
|
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
|
|
|
|
|
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
|
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
|
|
|
|
|
# Preprocessing the datasets.
|
|
|
# We need to read the audio files as arrays
|
|
|
def speech_file_to_array_fn(batch):
|
|
|
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
|
|
batch["speech"] = speech_array
|
|
|
batch["sentence"] = batch["sentence"].upper()
|
|
|
return batch
|
|
|
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|
|
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
|
|
|
|
|
with torch.no_grad():
|
|
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
|
|
|
|
|
predicted_ids = torch.argmax(logits, dim=-1)
|
|
|
predicted_sentences = processor.batch_decode(predicted_ids)
|
|
|
```
|
|
|
|
|
|
## Evaluation Commands
|
|
|
|
|
|
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
|
|
|
|
|
|
```bash
|
|
|
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset mozilla-foundation/common_voice_8_0 --config pt --split test
|
|
|
```
|
|
|
|
|
|
2. To evaluate on `speech-recognition-community-v2/dev_data`
|
|
|
|
|
|
```bash
|
|
|
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset speech-recognition-community-v2/dev_data --config pt --split validation --chunk_length_s 5.0 --stride_length_s 1.0
|
|
|
```
|
|
|
|
|
|
## Citation
|
|
|
If you want to cite this model you can use this:
|
|
|
|
|
|
```bibtex
|
|
|
@misc{grosman2021xlsr-1b-portuguese,
|
|
|
title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {P}ortuguese},
|
|
|
author={Grosman, Jonatas},
|
|
|
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese}},
|
|
|
year={2022}
|
|
|
}
|
|
|
``` |