ner-bert-large-v1
This model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on the lener_br dataset. It achieves the following results on the evaluation set:
- Loss: 0.1603
- Precision: 0.8897
- Recall: 0.9174
- F1: 0.9033
- Accuracy: 0.9762
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.0485 | 1.0 | 979 | 0.1120 | 0.8078 | 0.8886 | 0.8463 | 0.9708 |
| 0.0319 | 2.0 | 1958 | 0.1109 | 0.8447 | 0.9157 | 0.8788 | 0.9749 |
| 0.0198 | 3.0 | 2937 | 0.1316 | 0.8776 | 0.9097 | 0.8933 | 0.9723 |
| 0.0594 | 4.0 | 3916 | 0.1250 | 0.8373 | 0.9133 | 0.8737 | 0.9747 |
| 0.0142 | 5.0 | 4895 | 0.1349 | 0.8388 | 0.8985 | 0.8676 | 0.9740 |
| 0.0104 | 6.0 | 5874 | 0.1529 | 0.8654 | 0.9140 | 0.8890 | 0.9728 |
| 0.0025 | 7.0 | 6853 | 0.1364 | 0.8836 | 0.9189 | 0.9009 | 0.9781 |
| 0.0055 | 8.0 | 7832 | 0.1688 | 0.8773 | 0.9103 | 0.8935 | 0.9749 |
| 0.0018 | 9.0 | 8811 | 0.1603 | 0.8897 | 0.9174 | 0.9033 | 0.9762 |
| 0.0019 | 10.0 | 9790 | 0.1703 | 0.8881 | 0.9187 | 0.9032 | 0.9758 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 1
Model tree for Palu1006/ner-bert-large-v1
Base model
neuralmind/bert-large-portuguese-casedDataset used to train Palu1006/ner-bert-large-v1
Evaluation results
- Precision on lener_brvalidation set self-reported0.890
- Recall on lener_brvalidation set self-reported0.917
- F1 on lener_brvalidation set self-reported0.903
- Accuracy on lener_brvalidation set self-reported0.976