bert-finetuned-ner
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0870
- Precision: 0.9011
- Recall: 0.9248
- F1: 0.9128
- Accuracy: 0.9817
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 7
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.0644 | 1.0 | 1250 | 0.0961 | 0.8618 | 0.9120 | 0.8862 | 0.9766 |
| 0.046 | 2.0 | 2500 | 0.0896 | 0.8964 | 0.9174 | 0.9068 | 0.9802 |
| 0.0357 | 3.0 | 3750 | 0.0834 | 0.8872 | 0.9185 | 0.9026 | 0.9808 |
| 0.0297 | 4.0 | 5000 | 0.0865 | 0.9030 | 0.9241 | 0.9134 | 0.9816 |
| 0.0256 | 5.0 | 6250 | 0.0872 | 0.8985 | 0.9239 | 0.9111 | 0.9817 |
| 0.0206 | 6.0 | 7500 | 0.0858 | 0.9003 | 0.9253 | 0.9126 | 0.9817 |
| 0.0186 | 7.0 | 8750 | 0.0870 | 0.9011 | 0.9248 | 0.9128 | 0.9817 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Model tree for Oleska/bert-finetuned-ner
Base model
BAAI/bge-small-en-v1.5