Improve model card: Add metadata, prominent links, and basic usage example

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +54 -2
README.md CHANGED
@@ -1,6 +1,21 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
4
  ## Introduction
5
  We release our first reflective generative model: MetaStone-S1.
6
  With only 32B parameters, MetaStone-S1 performs comparably to the OpenAI-o3 series on mathematics, coding, and Chinese reasoning tasks.
@@ -12,8 +27,45 @@ By sharing the backbone network between the PRMs and policy models, MetaStone‑
12
 
13
  <img src="./figures/intro.jpg" alt="Introduction" width="800">
14
 
15
- This repo contains the training and evaluation code of MetaStone-S1. For full details please refer to our [paper](https://arxiv.org/abs/2507.01951) and [our official website](https://www.wenxiaobai.com/).
16
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  ## Performance
19
 
 
1
  ---
2
  license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ library_name: transformers
5
+ tags:
6
+ - test-time-scaling
7
+ - reflective-model
8
+ - mathematics
9
+ - code
10
+ - reasoning
11
  ---
12
+
13
+ # MetaStone-S1: Test-Time Scaling with Reflective Generative Model
14
+
15
+ **Paper:** [Test-Time Scaling with Reflective Generative Model](https://huggingface.co/papers/2507.01951)
16
+ **Project page:** [wenxiaobai.com](https://www.wenxiaobai.com/)
17
+ **Code:** [MetaStone-AI/MetaStone-S1](https://github.com/MetaStone-AI/MetaStone-S1)
18
+
19
  ## Introduction
20
  We release our first reflective generative model: MetaStone-S1.
21
  With only 32B parameters, MetaStone-S1 performs comparably to the OpenAI-o3 series on mathematics, coding, and Chinese reasoning tasks.
 
27
 
28
  <img src="./figures/intro.jpg" alt="Introduction" width="800">
29
 
30
+ This repository contains the training and evaluation code for MetaStone-S1. For full details, please refer to our [paper](https://huggingface.co/papers/2507.01951) and [official website](https://www.wenxiaobai.com/).
31
+
32
+ ## Usage
33
+ You can load the model using the `transformers` library for basic text generation.
34
+
35
+ ```python
36
+ import torch
37
+ from transformers import AutoModelForCausalLM, AutoTokenizer
38
+
39
+ # Load model and tokenizer
40
+ # Note: For full functionality of MetaStone-S1's reflective generative capabilities
41
+ # (e.g., using the Process Reward Model for enhanced reasoning modes and test-time scaling),
42
+ # please refer to the official GitHub repository for detailed inference pipeline.
43
+ model_name = "MetaStoneTec/MetaStone-S1-32B" # Use MetaStoneTec/MetaStone-S1-7B or MetaStoneTec/MetaStone-S1-1.5B for other sizes
44
+ model = AutoModelForCausalLM.from_pretrained(
45
+ model_name,
46
+ torch_dtype=torch.bfloat16, # Use torch.float16 if bfloat16 is not supported by your GPU
47
+ device_map="auto"
48
+ )
49
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
50
+
51
+ # Example text generation
52
+ prompt = "What is the capital of France?"
53
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
54
+
55
+ # Generate text
56
+ outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, temperature=0.7)
57
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
58
+ print(generated_text)
59
+
60
+ # Example with a specific prompt format (if applicable, adjust as per model's fine-tuning)
61
+ # For models fine-tuned with specific chat templates, use tokenizer.apply_chat_template:
62
+ # messages = [{"role": "user", "content": "Hello, how are you today?"}]
63
+ # prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
64
+ # inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
65
+ # outputs = model.generate(**inputs, max_new_tokens=50)
66
+ # generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
67
+ # print(generated_text)
68
+ ```
69
 
70
  ## Performance
71