VideoMAE-v2 (Base) β HMDB51 (51 classes) Fine-tuned Checkpoint
This repository contains a fine-tuned PyTorch checkpoint exported from Kaggle for reuse and future fine-tuning.
Contents
best_videomaev2_base_51cls.ptβ raw checkpoint (torch.load)checkpoint_meta.jsonβ metadata (best epoch, best val accuracy, etc.)training_results.csvβ epoch-level train/val accuracylabel2id.json/id2label.jsonβ label maps (if available)
Training results
- Best validation accuracy: 0.8626 (epoch 10)
| Epoch | Train Acc | Val Acc | Saved Best |
|---|---|---|---|
| 1 | 0.2614 | 0.7125 | β |
| 2 | 0.5320 | 0.8147 | β |
| 3 | 0.6024 | 0.8275 | β |
| 4 | 0.6108 | 0.8259 | |
| 5 | 0.6350 | 0.8450 | β |
| 6 | 0.6444 | 0.8530 | β |
| 7 | 0.6387 | 0.8530 | |
| 8 | 0.6328 | 0.8578 | β |
| 9 | 0.6583 | 0.8610 | β |
| 10 | 0.6664 | 0.8626 | β |
Download & load
from huggingface_hub import hf_hub_download
import torch
repo_id = "Kiffaz11/Videomae_v2_base-hmdb51-finetuned"
ckpt_path = hf_hub_download(repo_id=repo_id, filename="best_videomaev2_base_51cls.pt")
ckpt = torch.load(ckpt_path, map_location="cpu")
Notes
- This repo stores a raw PyTorch checkpoint (not necessarily a
save_pretrained()Transformers folder). - Use the included metadata + label maps to reconstruct the training/inference code you used in Kaggle.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for Kiffaz11/Videomae_v2_base-hmdb51-finetuned
Base model
OpenGVLab/VideoMAEv2-Base