bert-finetuned-ner
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0871
- Precision: 0.8909
- Recall: 0.9177
- F1: 0.9041
- Accuracy: 0.9800
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.0771 | 0.4 | 500 | 0.0932 | 0.8711 | 0.9096 | 0.8899 | 0.9781 |
| 0.0632 | 0.8 | 1000 | 0.0871 | 0.8805 | 0.9118 | 0.8959 | 0.9795 |
| 0.0494 | 1.2 | 1500 | 0.0888 | 0.8834 | 0.9184 | 0.9006 | 0.9797 |
| 0.0409 | 1.6 | 2000 | 0.0862 | 0.8850 | 0.9179 | 0.9011 | 0.9801 |
| 0.0442 | 2.0 | 2500 | 0.0871 | 0.8909 | 0.9177 | 0.9041 | 0.9800 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Model tree for Keiiino/bert-finetuned-ner
Base model
BAAI/bge-small-en-v1.5