Elie's picture
End of training
7e1586e verified
metadata
library_name: transformers
language:
  - lin
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small Lingala
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: FLEURS
          type: google/fleurs
          config: ln_cd
          split: validation
          args: ln_cd
        metrics:
          - name: Wer
            type: wer
            value: 19.83622350674374

Whisper Small Lingala

This model is a fine-tuned version of openai/whisper-small on the FLEURS dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5608
  • Wer: 19.8362

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0939 4.7619 1000 0.4101 20.1182
0.0034 9.5238 2000 0.4968 19.7772
0.0013 14.2857 3000 0.5139 19.3226

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0