Abhi99999/Hunyuan-1.8B-Instruct-Q4_K_M-GGUF
This model was converted to GGUF format from tencent/Hunyuan-1.8B-Instruct using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Benchmark
Note: The following benchmarks are evaluated by TRT-LLM-backend on several base models.
| Model | Hunyuan-0.5B-Pretrain | Hunyuan-1.8B-Pretrain | Hunyuan-4B-Pretrain | Hunyuan-7B-Pretrain |
|---|---|---|---|---|
| MMLU | 54.02 | 64.62 | 74.01 | 79.82 |
| MMLU-Redux | 54.72 | 64.42 | 73.53 | 79 |
| MMLU-Pro | 31.15 | 38.65 | 51.91 | 57.79 |
| SuperGPQA | 17.23 | 24.98 | 27.28 | 30.47 |
| BBH | 45.92 | 74.32 | 75.17 | 82.95 |
| GPQA | 27.76 | 35.81 | 43.52 | 44.07 |
| GSM8K | 55.64 | 77.26 | 87.49 | 88.25 |
| MATH | 42.95 | 62.85 | 72.25 | 74.85 |
| EvalPlus | 39.71 | 60.67 | 67.76 | 66.96 |
| MultiPL-E | 21.83 | 45.92 | 59.87 | 60.41 |
| MBPP | 43.38 | 66.14 | 76.46 | 76.19 |
| CRUX-O | 30.75 | 36.88 | 56.5 | 60.75 |
| Chinese SimpleQA | 12.51 | 22.31 | 30.53 | 38.86 |
| simpleQA (5shot) | 2.38 | 3.61 | 4.21 | 5.69 |
| Topic | Bench | Hunyuan-0.5B-Instruct | Hunyuan-1.8B-Instruct | Hunyuan-4B-Instruct | Hunyuan-7B-Instruct |
|---|---|---|---|---|---|
| Mathematics | AIME 2024 AIME 2025 MATH |
17.2 20 48.5 |
56.7 53.9 86 |
78.3 66.5 92.6 |
81.1 75.3 93.7 |
| Science | GPQA-Diamond OlympiadBench |
23.3 29.6 |
47.2 63.4 |
61.1 73.1 |
60.1 76.5 |
| Coding | Livecodebench Fullstackbench |
11.1 20.9 |
31.5 42 |
49.4 54.6 |
57 56.3 |
| Reasoning | BBH DROP ZebraLogic |
40.3 52.8 34.5 |
64.6 76.7 74.6 |
83 78.2 83.5 |
87.8 85.9 85.1 |
| Instruction Following |
IF-Eval SysBench |
49.7 28.1 |
67.6 55.5 |
76.6 68 |
79.3 72.7 |
| Agent | BFCL v3 τ-Bench ComplexFuncBench C3-Bench |
49.8 14.4 13.9 45.3 |
58.3 18.2 22.3 54.6 |
67.9 30.1 26.3 64.3 |
70.8 35.3 29.2 68.5 |
| Long Context |
PenguinScrolls longbench-v2 FRAMES |
53.9 34.7 41.9 |
73.1 33.2 55.6 |
83.1 44.1 79.2 |
82 43 78.6 |
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Abhi99999/Hunyuan-1.8B-Instruct-Q4_K_M-GGUF --hf-file hunyuan-1.8b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Abhi99999/Hunyuan-1.8B-Instruct-Q4_K_M-GGUF --hf-file hunyuan-1.8b-instruct-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Abhi99999/Hunyuan-1.8B-Instruct-Q4_K_M-GGUF --hf-file hunyuan-1.8b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Abhi99999/Hunyuan-1.8B-Instruct-Q4_K_M-GGUF --hf-file hunyuan-1.8b-instruct-q4_k_m.gguf -c 2048
- Downloads last month
- 21
4-bit
Model tree for Edge-Quant/Hunyuan-1.8B-Instruct-Q4_K_M-GGUF
Base model
tencent/Hunyuan-1.8B-Instruct