swiftformer-xs-DMAE / README.md
Augusto777's picture
End of training
f318ae5 verified
|
raw
history blame
3.99 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-DMAE
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.717391304347826

swiftformer-xs-DMAE

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8492
  • Accuracy: 0.7174

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 1.3859 0.3261
No log 2.0 7 1.3806 0.5217
1.3829 2.86 10 1.3677 0.5870
1.3829 4.0 14 1.3037 0.6739
1.3829 4.86 17 1.2540 0.6522
1.3074 6.0 21 1.1509 0.6522
1.3074 6.86 24 1.0882 0.6739
1.3074 8.0 28 1.0569 0.6522
1.1437 8.86 31 1.0536 0.6304
1.1437 10.0 35 0.9993 0.6522
1.1437 10.86 38 0.9819 0.6739
1.0439 12.0 42 0.9593 0.6957
1.0439 12.86 45 0.9359 0.6304
1.0439 14.0 49 0.9467 0.6522
0.9813 14.86 52 0.9331 0.6522
0.9813 16.0 56 0.9386 0.6522
0.9813 16.86 59 0.9266 0.6739
0.8763 18.0 63 0.8833 0.6957
0.8763 18.86 66 0.8679 0.6739
0.9187 20.0 70 0.8639 0.6957
0.9187 20.86 73 0.8492 0.7174
0.9187 22.0 77 0.8846 0.6957
0.8067 22.86 80 0.9083 0.6522
0.8067 24.0 84 0.9269 0.6522
0.8067 24.86 87 0.8849 0.6739
0.7248 26.0 91 0.8935 0.6522
0.7248 26.86 94 0.8719 0.6957
0.7248 28.0 98 0.8759 0.6739
0.773 28.86 101 0.8887 0.6739
0.773 30.0 105 0.9288 0.6522
0.773 30.86 108 0.9041 0.6522
0.7467 32.0 112 0.9017 0.6522
0.7467 32.86 115 0.8767 0.6522
0.7467 34.0 119 0.8993 0.6739
0.7323 34.29 120 0.8946 0.6522

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0