distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9261
  • Accuracy: {'accuracy': 0.895}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3525 {'accuracy': 0.89}
0.4331 2.0 500 0.4067 {'accuracy': 0.883}
0.4331 3.0 750 0.6208 {'accuracy': 0.885}
0.1783 4.0 1000 0.6784 {'accuracy': 0.891}
0.1783 5.0 1250 0.7692 {'accuracy': 0.89}
0.0704 6.0 1500 0.8742 {'accuracy': 0.887}
0.0704 7.0 1750 0.9085 {'accuracy': 0.896}
0.0187 8.0 2000 0.9310 {'accuracy': 0.896}
0.0187 9.0 2250 0.9163 {'accuracy': 0.897}
0.0059 10.0 2500 0.9261 {'accuracy': 0.895}

Framework versions

  • PEFT 0.17.1
  • Transformers 4.56.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Ammarvellous/distilbert-base-uncased-lora-text-classification

Adapter
(348)
this model

Evaluation results