distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0024
  • Accuracy: {'accuracy': 0.884}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3059 {'accuracy': 0.873}
0.4329 2.0 500 0.4790 {'accuracy': 0.887}
0.4329 3.0 750 0.5350 {'accuracy': 0.876}
0.2328 4.0 1000 0.5796 {'accuracy': 0.878}
0.2328 5.0 1250 0.8671 {'accuracy': 0.861}
0.056 6.0 1500 0.8909 {'accuracy': 0.878}
0.056 7.0 1750 0.9056 {'accuracy': 0.876}
0.0296 8.0 2000 0.9462 {'accuracy': 0.878}
0.0296 9.0 2250 0.9914 {'accuracy': 0.881}
0.0142 10.0 2500 1.0024 {'accuracy': 0.884}

Framework versions

  • PEFT 0.17.1
  • Transformers 4.57.1
  • Pytorch 2.9.0
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AmberJin4526/distilbert-base-uncased-lora-text-classification

Adapter
(347)
this model

Evaluation results