--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_22_0 metrics: - wer model-index: - name: openai/whisper-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_22_0 type: common_voice_22_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 12.160220434106431 --- # openai/whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_22_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3891 - Wer: 12.1602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.75e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:-----:|:---------------:|:-------:| | 0.0113 | 10.8225 | 5000 | 0.2778 | 12.1163 | | 0.0047 | 21.6450 | 10000 | 0.3096 | 11.8923 | | 0.0059 | 32.4675 | 15000 | 0.3285 | 12.1856 | | 0.0028 | 43.2900 | 20000 | 0.3573 | 11.6886 | | 0.0015 | 54.1126 | 25000 | 0.3549 | 11.6117 | | 0.0028 | 64.9351 | 30000 | 0.3610 | 11.9312 | | 0.0013 | 75.7576 | 35000 | 0.3711 | 11.6683 | | 0.0009 | 86.5801 | 40000 | 0.3756 | 11.6176 | | 0.0008 | 97.4026 | 45000 | 0.3801 | 11.8213 | | 0.0009 | 108.2251 | 50000 | 0.3891 | 12.1602 | ### Framework versions - Transformers 4.52.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1