--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - common_voice_22_0 metrics: - wer model-index: - name: openai/whisper-base results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_22_0 type: common_voice_22_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 14.127053891405774 --- # openai/whisper-base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the common_voice_22_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5965 - Wer: 14.1271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.75e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:-----:|:---------------:|:-------:| | 0.0041 | 21.6450 | 5000 | 0.3770 | 16.8402 | | 0.0025 | 43.2900 | 10000 | 0.4045 | 16.4480 | | 0.0034 | 64.9351 | 15000 | 0.4193 | 16.2587 | | 0.0014 | 86.5801 | 20000 | 0.4449 | 15.8953 | | 0.0012 | 108.2251 | 25000 | 0.4490 | 15.8251 | | 0.0 | 129.8701 | 30000 | 0.4585 | 14.3882 | | 0.0 | 151.5152 | 35000 | 0.4865 | 13.9656 | | 0.0 | 173.1602 | 40000 | 0.5256 | 13.7763 | | 0.0 | 194.8052 | 45000 | 0.5518 | 13.6419 | | 0.0 | 216.4502 | 50000 | 0.5558 | 13.6461 | | 0.0 | 238.0952 | 55000 | 0.5683 | 13.7171 | | 0.0 | 259.7403 | 60000 | 0.5801 | 13.9259 | | 0.0 | 281.3853 | 65000 | 0.5886 | 13.9631 | | 0.0 | 303.0303 | 70000 | 0.5965 | 14.1271 | ### Framework versions - Transformers 4.52.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1