Upload anytext.py
Browse files- auxiliary_latent_module/anytext.py +233 -26
auxiliary_latent_module/anytext.py
CHANGED
|
@@ -35,7 +35,6 @@ import PIL.Image
|
|
| 35 |
import torch
|
| 36 |
import torch.nn.functional as F
|
| 37 |
from easydict import EasyDict as edict
|
| 38 |
-
from frozen_clip_embedder_t3 import FrozenCLIPEmbedderT3
|
| 39 |
from huggingface_hub import hf_hub_download
|
| 40 |
from ocr_recog.RecModel import RecModel
|
| 41 |
from PIL import Image, ImageDraw, ImageFont
|
|
@@ -325,12 +324,6 @@ def adjust_image(box, img):
|
|
| 325 |
return result
|
| 326 |
|
| 327 |
|
| 328 |
-
"""
|
| 329 |
-
mask: numpy.ndarray, mask of textual, HWC
|
| 330 |
-
src_img: torch.Tensor, source image, CHW
|
| 331 |
-
"""
|
| 332 |
-
|
| 333 |
-
|
| 334 |
def crop_image(src_img, mask):
|
| 335 |
box = min_bounding_rect(mask)
|
| 336 |
result = adjust_image(box, src_img)
|
|
@@ -526,11 +519,225 @@ class TextRecognizer(object):
|
|
| 526 |
return loss
|
| 527 |
|
| 528 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
class TextEmbeddingModule(nn.Module):
|
| 530 |
-
# @register_to_config
|
| 531 |
def __init__(self, font_path, use_fp16=False, device="cpu"):
|
| 532 |
super().__init__()
|
| 533 |
-
# TODO: Learn if the recommended font file is free to use
|
| 534 |
self.font = ImageFont.truetype(font_path, 60)
|
| 535 |
self.use_fp16 = use_fp16
|
| 536 |
self.device = device
|
|
@@ -724,10 +931,11 @@ class TextEmbeddingModule(nn.Module):
|
|
| 724 |
ratio = min(W * 0.9 / text_width, H * 0.9 / text_height)
|
| 725 |
new_font = font.font_variant(size=int(g_size * ratio))
|
| 726 |
|
| 727 |
-
|
| 728 |
-
|
|
|
|
| 729 |
x = (img.width - text_width) // 2
|
| 730 |
-
y = (img.height - text_height) // 2 -
|
| 731 |
draw.text((x, y), text, font=new_font, fill="white")
|
| 732 |
img = np.expand_dims(np.array(img), axis=2).astype(np.float64)
|
| 733 |
return img
|
|
@@ -1019,7 +1227,7 @@ class AnyTextPipeline(
|
|
| 1019 |
Args:
|
| 1020 |
vae ([`AutoencoderKL`]):
|
| 1021 |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
| 1022 |
-
text_encoder ([`~
|
| 1023 |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
| 1024 |
tokenizer ([`~transformers.CLIPTokenizer`]):
|
| 1025 |
A `CLIPTokenizer` to tokenize text.
|
|
@@ -1049,26 +1257,25 @@ class AnyTextPipeline(
|
|
| 1049 |
self,
|
| 1050 |
font_path: str,
|
| 1051 |
vae: AutoencoderKL,
|
| 1052 |
-
text_encoder:
|
| 1053 |
tokenizer: CLIPTokenizer,
|
| 1054 |
unet: UNet2DConditionModel,
|
| 1055 |
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
| 1056 |
scheduler: KarrasDiffusionSchedulers,
|
| 1057 |
safety_checker: StableDiffusionSafetyChecker,
|
| 1058 |
feature_extractor: CLIPImageProcessor,
|
|
|
|
| 1059 |
trust_remote_code: bool = False,
|
| 1060 |
-
text_embedding_module: TextEmbeddingModule = None,
|
| 1061 |
-
auxiliary_latent_module: AuxiliaryLatentModule = None,
|
| 1062 |
image_encoder: CLIPVisionModelWithProjection = None,
|
| 1063 |
requires_safety_checker: bool = True,
|
| 1064 |
):
|
| 1065 |
super().__init__()
|
| 1066 |
-
self.text_embedding_module = TextEmbeddingModule(
|
| 1067 |
-
|
| 1068 |
-
)
|
| 1069 |
-
self.auxiliary_latent_module = AuxiliaryLatentModule(
|
| 1070 |
-
|
| 1071 |
-
)
|
| 1072 |
|
| 1073 |
if safety_checker is None and requires_safety_checker:
|
| 1074 |
logger.warning(
|
|
@@ -1099,8 +1306,8 @@ class AnyTextPipeline(
|
|
| 1099 |
safety_checker=safety_checker,
|
| 1100 |
feature_extractor=feature_extractor,
|
| 1101 |
image_encoder=image_encoder,
|
| 1102 |
-
text_embedding_module=self.text_embedding_module,
|
| 1103 |
-
auxiliary_latent_module=
|
| 1104 |
)
|
| 1105 |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 1106 |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
|
@@ -1968,7 +2175,7 @@ class AnyTextPipeline(
|
|
| 1968 |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
| 1969 |
)
|
| 1970 |
draw_pos = draw_pos.to(device=device) if isinstance(draw_pos, torch.Tensor) else draw_pos
|
| 1971 |
-
prompt_embeds, negative_prompt_embeds, text_info, np_hint = self.
|
| 1972 |
prompt,
|
| 1973 |
texts,
|
| 1974 |
negative_prompt,
|
|
@@ -2210,6 +2417,6 @@ class AnyTextPipeline(
|
|
| 2210 |
|
| 2211 |
def to(self, *args, **kwargs):
|
| 2212 |
super().to(*args, **kwargs)
|
| 2213 |
-
self.text_embedding_module.to(*args, **kwargs)
|
| 2214 |
self.auxiliary_latent_module.to(*args, **kwargs)
|
| 2215 |
return self
|
|
|
|
| 35 |
import torch
|
| 36 |
import torch.nn.functional as F
|
| 37 |
from easydict import EasyDict as edict
|
|
|
|
| 38 |
from huggingface_hub import hf_hub_download
|
| 39 |
from ocr_recog.RecModel import RecModel
|
| 40 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
| 324 |
return result
|
| 325 |
|
| 326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
def crop_image(src_img, mask):
|
| 328 |
box = min_bounding_rect(mask)
|
| 329 |
result = adjust_image(box, src_img)
|
|
|
|
| 519 |
return loss
|
| 520 |
|
| 521 |
|
| 522 |
+
import torch
|
| 523 |
+
from torch import nn
|
| 524 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
| 525 |
+
from transformers.modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
class AbstractEncoder(nn.Module):
|
| 529 |
+
def __init__(self):
|
| 530 |
+
super().__init__()
|
| 531 |
+
|
| 532 |
+
def encode(self, *args, **kwargs):
|
| 533 |
+
raise NotImplementedError
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
class FrozenCLIPEmbedderT3(AbstractEncoder):
|
| 537 |
+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
| 538 |
+
|
| 539 |
+
def __init__(
|
| 540 |
+
self,
|
| 541 |
+
version="openai/clip-vit-large-patch14",
|
| 542 |
+
device="cpu",
|
| 543 |
+
max_length=77,
|
| 544 |
+
freeze=True,
|
| 545 |
+
use_fp16=False,
|
| 546 |
+
):
|
| 547 |
+
super().__init__()
|
| 548 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
| 549 |
+
self.transformer = CLIPTextModel.from_pretrained(
|
| 550 |
+
version, use_safetensors=True, torch_dtype=torch.float16 if use_fp16 else torch.float32
|
| 551 |
+
).to(device)
|
| 552 |
+
self.device = device
|
| 553 |
+
self.max_length = max_length
|
| 554 |
+
if freeze:
|
| 555 |
+
self.freeze()
|
| 556 |
+
|
| 557 |
+
def embedding_forward(
|
| 558 |
+
self,
|
| 559 |
+
input_ids=None,
|
| 560 |
+
position_ids=None,
|
| 561 |
+
inputs_embeds=None,
|
| 562 |
+
embedding_manager=None,
|
| 563 |
+
):
|
| 564 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
| 565 |
+
if position_ids is None:
|
| 566 |
+
position_ids = self.position_ids[:, :seq_length]
|
| 567 |
+
if inputs_embeds is None:
|
| 568 |
+
inputs_embeds = self.token_embedding(input_ids)
|
| 569 |
+
if embedding_manager is not None:
|
| 570 |
+
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
|
| 571 |
+
position_embeddings = self.position_embedding(position_ids)
|
| 572 |
+
embeddings = inputs_embeds + position_embeddings
|
| 573 |
+
return embeddings
|
| 574 |
+
|
| 575 |
+
self.transformer.text_model.embeddings.forward = embedding_forward.__get__(
|
| 576 |
+
self.transformer.text_model.embeddings
|
| 577 |
+
)
|
| 578 |
+
|
| 579 |
+
def encoder_forward(
|
| 580 |
+
self,
|
| 581 |
+
inputs_embeds,
|
| 582 |
+
attention_mask=None,
|
| 583 |
+
causal_attention_mask=None,
|
| 584 |
+
output_attentions=None,
|
| 585 |
+
output_hidden_states=None,
|
| 586 |
+
return_dict=None,
|
| 587 |
+
):
|
| 588 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 589 |
+
output_hidden_states = (
|
| 590 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 591 |
+
)
|
| 592 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 593 |
+
encoder_states = () if output_hidden_states else None
|
| 594 |
+
all_attentions = () if output_attentions else None
|
| 595 |
+
hidden_states = inputs_embeds
|
| 596 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 597 |
+
if output_hidden_states:
|
| 598 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 599 |
+
layer_outputs = encoder_layer(
|
| 600 |
+
hidden_states,
|
| 601 |
+
attention_mask,
|
| 602 |
+
causal_attention_mask,
|
| 603 |
+
output_attentions=output_attentions,
|
| 604 |
+
)
|
| 605 |
+
hidden_states = layer_outputs[0]
|
| 606 |
+
if output_attentions:
|
| 607 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
| 608 |
+
if output_hidden_states:
|
| 609 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 610 |
+
return hidden_states
|
| 611 |
+
|
| 612 |
+
self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder)
|
| 613 |
+
|
| 614 |
+
def text_encoder_forward(
|
| 615 |
+
self,
|
| 616 |
+
input_ids=None,
|
| 617 |
+
attention_mask=None,
|
| 618 |
+
position_ids=None,
|
| 619 |
+
output_attentions=None,
|
| 620 |
+
output_hidden_states=None,
|
| 621 |
+
return_dict=None,
|
| 622 |
+
embedding_manager=None,
|
| 623 |
+
):
|
| 624 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 625 |
+
output_hidden_states = (
|
| 626 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 627 |
+
)
|
| 628 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 629 |
+
if input_ids is None:
|
| 630 |
+
raise ValueError("You have to specify either input_ids")
|
| 631 |
+
input_shape = input_ids.size()
|
| 632 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 633 |
+
hidden_states = self.embeddings(
|
| 634 |
+
input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager
|
| 635 |
+
)
|
| 636 |
+
# CLIP's text model uses causal mask, prepare it here.
|
| 637 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
| 638 |
+
causal_attention_mask = _create_4d_causal_attention_mask(
|
| 639 |
+
input_shape, hidden_states.dtype, device=hidden_states.device
|
| 640 |
+
)
|
| 641 |
+
# expand attention_mask
|
| 642 |
+
if attention_mask is not None:
|
| 643 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 644 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
| 645 |
+
last_hidden_state = self.encoder(
|
| 646 |
+
inputs_embeds=hidden_states,
|
| 647 |
+
attention_mask=attention_mask,
|
| 648 |
+
causal_attention_mask=causal_attention_mask,
|
| 649 |
+
output_attentions=output_attentions,
|
| 650 |
+
output_hidden_states=output_hidden_states,
|
| 651 |
+
return_dict=return_dict,
|
| 652 |
+
)
|
| 653 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
| 654 |
+
return last_hidden_state
|
| 655 |
+
|
| 656 |
+
self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model)
|
| 657 |
+
|
| 658 |
+
def transformer_forward(
|
| 659 |
+
self,
|
| 660 |
+
input_ids=None,
|
| 661 |
+
attention_mask=None,
|
| 662 |
+
position_ids=None,
|
| 663 |
+
output_attentions=None,
|
| 664 |
+
output_hidden_states=None,
|
| 665 |
+
return_dict=None,
|
| 666 |
+
embedding_manager=None,
|
| 667 |
+
):
|
| 668 |
+
return self.text_model(
|
| 669 |
+
input_ids=input_ids,
|
| 670 |
+
attention_mask=attention_mask,
|
| 671 |
+
position_ids=position_ids,
|
| 672 |
+
output_attentions=output_attentions,
|
| 673 |
+
output_hidden_states=output_hidden_states,
|
| 674 |
+
return_dict=return_dict,
|
| 675 |
+
embedding_manager=embedding_manager,
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
self.transformer.forward = transformer_forward.__get__(self.transformer)
|
| 679 |
+
|
| 680 |
+
def freeze(self):
|
| 681 |
+
self.transformer = self.transformer.eval()
|
| 682 |
+
for param in self.parameters():
|
| 683 |
+
param.requires_grad = False
|
| 684 |
+
|
| 685 |
+
def forward(self, text, **kwargs):
|
| 686 |
+
batch_encoding = self.tokenizer(
|
| 687 |
+
text,
|
| 688 |
+
truncation=False,
|
| 689 |
+
max_length=self.max_length,
|
| 690 |
+
return_length=True,
|
| 691 |
+
return_overflowing_tokens=False,
|
| 692 |
+
padding="longest",
|
| 693 |
+
return_tensors="pt",
|
| 694 |
+
)
|
| 695 |
+
input_ids = batch_encoding["input_ids"]
|
| 696 |
+
tokens_list = self.split_chunks(input_ids)
|
| 697 |
+
z_list = []
|
| 698 |
+
for tokens in tokens_list:
|
| 699 |
+
tokens = tokens.to(self.device)
|
| 700 |
+
_z = self.transformer(input_ids=tokens, **kwargs)
|
| 701 |
+
z_list += [_z]
|
| 702 |
+
return torch.cat(z_list, dim=1)
|
| 703 |
+
|
| 704 |
+
def encode(self, text, **kwargs):
|
| 705 |
+
return self(text, **kwargs)
|
| 706 |
+
|
| 707 |
+
def split_chunks(self, input_ids, chunk_size=75):
|
| 708 |
+
tokens_list = []
|
| 709 |
+
bs, n = input_ids.shape
|
| 710 |
+
id_start = input_ids[:, 0].unsqueeze(1) # dim --> [bs, 1]
|
| 711 |
+
id_end = input_ids[:, -1].unsqueeze(1)
|
| 712 |
+
if n == 2: # empty caption
|
| 713 |
+
tokens_list.append(torch.cat((id_start,) + (id_end,) * (chunk_size + 1), dim=1))
|
| 714 |
+
|
| 715 |
+
trimmed_encoding = input_ids[:, 1:-1]
|
| 716 |
+
num_full_groups = (n - 2) // chunk_size
|
| 717 |
+
|
| 718 |
+
for i in range(num_full_groups):
|
| 719 |
+
group = trimmed_encoding[:, i * chunk_size : (i + 1) * chunk_size]
|
| 720 |
+
group_pad = torch.cat((id_start, group, id_end), dim=1)
|
| 721 |
+
tokens_list.append(group_pad)
|
| 722 |
+
|
| 723 |
+
remaining_columns = (n - 2) % chunk_size
|
| 724 |
+
if remaining_columns > 0:
|
| 725 |
+
remaining_group = trimmed_encoding[:, -remaining_columns:]
|
| 726 |
+
padding_columns = chunk_size - remaining_group.shape[1]
|
| 727 |
+
padding = id_end.expand(bs, padding_columns)
|
| 728 |
+
remaining_group_pad = torch.cat((id_start, remaining_group, padding, id_end), dim=1)
|
| 729 |
+
tokens_list.append(remaining_group_pad)
|
| 730 |
+
return tokens_list
|
| 731 |
+
|
| 732 |
+
def to(self, *args, **kwargs):
|
| 733 |
+
self.transformer = self.transformer.to(*args, **kwargs)
|
| 734 |
+
self.device = self.transformer.device
|
| 735 |
+
return self
|
| 736 |
+
|
| 737 |
+
|
| 738 |
class TextEmbeddingModule(nn.Module):
|
|
|
|
| 739 |
def __init__(self, font_path, use_fp16=False, device="cpu"):
|
| 740 |
super().__init__()
|
|
|
|
| 741 |
self.font = ImageFont.truetype(font_path, 60)
|
| 742 |
self.use_fp16 = use_fp16
|
| 743 |
self.device = device
|
|
|
|
| 931 |
ratio = min(W * 0.9 / text_width, H * 0.9 / text_height)
|
| 932 |
new_font = font.font_variant(size=int(g_size * ratio))
|
| 933 |
|
| 934 |
+
left, top, right, bottom = new_font.getbbox(text)
|
| 935 |
+
text_width = right - left
|
| 936 |
+
text_height = bottom - top
|
| 937 |
x = (img.width - text_width) // 2
|
| 938 |
+
y = (img.height - text_height) // 2 - top // 2
|
| 939 |
draw.text((x, y), text, font=new_font, fill="white")
|
| 940 |
img = np.expand_dims(np.array(img), axis=2).astype(np.float64)
|
| 941 |
return img
|
|
|
|
| 1227 |
Args:
|
| 1228 |
vae ([`AutoencoderKL`]):
|
| 1229 |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
| 1230 |
+
text_encoder ([`~anytext.TextEmbeddingModule`]):
|
| 1231 |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
| 1232 |
tokenizer ([`~transformers.CLIPTokenizer`]):
|
| 1233 |
A `CLIPTokenizer` to tokenize text.
|
|
|
|
| 1257 |
self,
|
| 1258 |
font_path: str,
|
| 1259 |
vae: AutoencoderKL,
|
| 1260 |
+
text_encoder: TextEmbeddingModule,
|
| 1261 |
tokenizer: CLIPTokenizer,
|
| 1262 |
unet: UNet2DConditionModel,
|
| 1263 |
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
| 1264 |
scheduler: KarrasDiffusionSchedulers,
|
| 1265 |
safety_checker: StableDiffusionSafetyChecker,
|
| 1266 |
feature_extractor: CLIPImageProcessor,
|
| 1267 |
+
auxiliary_latent_module: AuxiliaryLatentModule,
|
| 1268 |
trust_remote_code: bool = False,
|
|
|
|
|
|
|
| 1269 |
image_encoder: CLIPVisionModelWithProjection = None,
|
| 1270 |
requires_safety_checker: bool = True,
|
| 1271 |
):
|
| 1272 |
super().__init__()
|
| 1273 |
+
# self.text_embedding_module = TextEmbeddingModule(
|
| 1274 |
+
# use_fp16=unet.dtype == torch.float16, device=unet.device, font_path=font_path
|
| 1275 |
+
# )
|
| 1276 |
+
# self.auxiliary_latent_module = AuxiliaryLatentModule(
|
| 1277 |
+
# vae=vae, use_fp16=unet.dtype == torch.float16, device=unet.device, font_path=font_path
|
| 1278 |
+
# )
|
| 1279 |
|
| 1280 |
if safety_checker is None and requires_safety_checker:
|
| 1281 |
logger.warning(
|
|
|
|
| 1306 |
safety_checker=safety_checker,
|
| 1307 |
feature_extractor=feature_extractor,
|
| 1308 |
image_encoder=image_encoder,
|
| 1309 |
+
# text_embedding_module=self.text_embedding_module,
|
| 1310 |
+
auxiliary_latent_module=auxiliary_latent_module,
|
| 1311 |
)
|
| 1312 |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 1313 |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
|
|
|
| 2175 |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
| 2176 |
)
|
| 2177 |
draw_pos = draw_pos.to(device=device) if isinstance(draw_pos, torch.Tensor) else draw_pos
|
| 2178 |
+
prompt_embeds, negative_prompt_embeds, text_info, np_hint = self.text_encoder(
|
| 2179 |
prompt,
|
| 2180 |
texts,
|
| 2181 |
negative_prompt,
|
|
|
|
| 2417 |
|
| 2418 |
def to(self, *args, **kwargs):
|
| 2419 |
super().to(*args, **kwargs)
|
| 2420 |
+
# self.text_embedding_module.to(*args, **kwargs)
|
| 2421 |
self.auxiliary_latent_module.to(*args, **kwargs)
|
| 2422 |
return self
|