File size: 5,688 Bytes
8986ff6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
"""
TIPM ML Models Package
======================
Advanced machine learning models for Tariff Impact Propagation Model (TIPM).
This package provides a comprehensive suite of ML models including:
- Multi-class classifiers for tariff impact analysis
- LSTM-based time series forecasters
- Advanced ensemble methods
- SHAP-based explainability
- Policy insight generation
The package is designed for enterprise-grade performance and interpretability.
"""
__version__ = "1.0.0"
__author__ = "TIPM Development Team"
# Import base classes
from .base import (
BaseMLModel,
ModelType,
ModelStatus,
PredictionResult,
TrainingResult,
ModelMetadata,
)
# Import classifiers
from .classifiers import (
TariffImpactClassifier,
EconomicOutcomeClassifier,
PolicyEffectivenessClassifier,
IndustryVulnerabilityClassifier,
)
# Import forecasters
from .forecasters import (
BaseTimeSeriesForecaster,
GDPImpactForecaster,
TradeFlowForecaster,
EmploymentForecaster,
PriceImpactForecaster,
LSTMNetwork,
)
# Import ensemble methods
from .ensemble import TIPMEnsemble, ModelVoting, StackingEnsemble, DynamicEnsemble
# Import explainability components
from .explainability import SHAPExplainer, PolicyInsightGenerator
# Import model manager
from .manager import MLModelManager
# Public API
__all__ = [
# Base classes
"BaseMLModel",
"ModelType",
"ModelStatus",
"PredictionResult",
"TrainingResult",
"ModelMetadata",
# Classifiers
"TariffImpactClassifier",
"EconomicOutcomeClassifier",
"PolicyEffectivenessClassifier",
"IndustryVulnerabilityClassifier",
# Forecasters
"BaseTimeSeriesForecaster",
"GDPImpactForecaster",
"TradeFlowForecaster",
"EmploymentForecaster",
"PriceImpactForecaster",
"LSTMNetwork",
# Ensemble methods
"TIPMEnsemble",
"ModelVoting",
"StackingEnsemble",
"DynamicEnsemble",
# Explainability
"SHAPExplainer",
"PolicyInsightGenerator",
# Model management
"MLModelManager",
]
# Package metadata
PACKAGE_INFO = {
"name": "TIPM ML Models",
"version": __version__,
"description": "Advanced machine learning models for tariff impact analysis",
"author": __author__,
"components": {
"classifiers": 4,
"forecasters": 4,
"ensemble_methods": 4,
"explainability_tools": 2,
"total_models": 14,
},
"features": [
"Multi-class classification for tariff impact severity",
"LSTM-based time series forecasting",
"Advanced ensemble methods (voting, stacking, dynamic)",
"SHAP-based model explainability",
"Policy insight generation",
"Model lifecycle management",
"Performance tracking and optimization",
],
"supported_model_types": [
"Classification",
"Multi-class Classification",
"Binary Classification",
"Time Series Forecasting",
"Ensemble Methods",
"Voting Ensembles",
"Stacking Ensembles",
],
}
def get_package_info():
"""Get comprehensive package information"""
return PACKAGE_INFO.copy()
def get_available_models():
"""Get list of all available model classes"""
return {
"classifiers": [
TariffImpactClassifier,
EconomicOutcomeClassifier,
PolicyEffectivenessClassifier,
IndustryVulnerabilityClassifier,
],
"forecasters": [
GDPImpactForecaster,
TradeFlowForecaster,
EmploymentForecaster,
PriceImpactForecaster,
],
"ensembles": [TIPMEnsemble, ModelVoting, StackingEnsemble, DynamicEnsemble],
}
def create_default_model_manager():
"""Create and configure a default ML model manager"""
manager = MLModelManager()
manager.create_default_models()
return manager
def get_model_summary():
"""Get a summary of all available models"""
models = get_available_models()
summary = {
"total_models": sum(len(model_list) for model_list in models.values()),
"categories": {},
}
for category, model_list in models.items():
summary["categories"][category] = {
"count": len(model_list),
"models": [model.__name__ for model in model_list],
}
return summary
# Version compatibility check
def check_compatibility():
"""Check package compatibility and dependencies"""
import sys
compatibility_info = {
"python_version": sys.version,
"python_version_compatible": sys.version_info >= (3, 8),
"required_packages": ["numpy", "pandas", "scikit-learn", "torch", "shap"],
"optional_packages": ["xgboost", "lightgbm", "optuna"],
}
return compatibility_info
# Quick start function
def quick_start():
"""Quick start guide for using TIPM ML models"""
print("π TIPM ML Models Quick Start")
print("=" * 40)
# Create model manager
manager = create_default_model_manager()
print(f"β
Created {len(manager.models)} default models")
print(f"π Classifiers: {len(manager.classifiers)}")
print(f"π Forecasters: {len(manager.forecasters)}")
print(f"π― Ensembles: {len(manager.ensembles)}")
print("\nπ§ Next steps:")
print("1. Prepare your training data (X, y)")
print("2. Train models: manager.train_all_models(X, y)")
print("3. Make predictions: manager.predict(model_id, X)")
print("4. Get explanations: manager.explain_prediction(model_id, X)")
print(
"5. Generate insights: manager.generate_policy_insights(model_id, explanation)"
)
return manager
|