File size: 5,688 Bytes
8986ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
TIPM ML Models Package
======================

Advanced machine learning models for Tariff Impact Propagation Model (TIPM).
This package provides a comprehensive suite of ML models including:

- Multi-class classifiers for tariff impact analysis
- LSTM-based time series forecasters
- Advanced ensemble methods
- SHAP-based explainability
- Policy insight generation

The package is designed for enterprise-grade performance and interpretability.
"""

__version__ = "1.0.0"
__author__ = "TIPM Development Team"

# Import base classes
from .base import (
    BaseMLModel,
    ModelType,
    ModelStatus,
    PredictionResult,
    TrainingResult,
    ModelMetadata,
)

# Import classifiers
from .classifiers import (
    TariffImpactClassifier,
    EconomicOutcomeClassifier,
    PolicyEffectivenessClassifier,
    IndustryVulnerabilityClassifier,
)

# Import forecasters
from .forecasters import (
    BaseTimeSeriesForecaster,
    GDPImpactForecaster,
    TradeFlowForecaster,
    EmploymentForecaster,
    PriceImpactForecaster,
    LSTMNetwork,
)

# Import ensemble methods
from .ensemble import TIPMEnsemble, ModelVoting, StackingEnsemble, DynamicEnsemble

# Import explainability components
from .explainability import SHAPExplainer, PolicyInsightGenerator

# Import model manager
from .manager import MLModelManager

# Public API
__all__ = [
    # Base classes
    "BaseMLModel",
    "ModelType",
    "ModelStatus",
    "PredictionResult",
    "TrainingResult",
    "ModelMetadata",
    # Classifiers
    "TariffImpactClassifier",
    "EconomicOutcomeClassifier",
    "PolicyEffectivenessClassifier",
    "IndustryVulnerabilityClassifier",
    # Forecasters
    "BaseTimeSeriesForecaster",
    "GDPImpactForecaster",
    "TradeFlowForecaster",
    "EmploymentForecaster",
    "PriceImpactForecaster",
    "LSTMNetwork",
    # Ensemble methods
    "TIPMEnsemble",
    "ModelVoting",
    "StackingEnsemble",
    "DynamicEnsemble",
    # Explainability
    "SHAPExplainer",
    "PolicyInsightGenerator",
    # Model management
    "MLModelManager",
]

# Package metadata
PACKAGE_INFO = {
    "name": "TIPM ML Models",
    "version": __version__,
    "description": "Advanced machine learning models for tariff impact analysis",
    "author": __author__,
    "components": {
        "classifiers": 4,
        "forecasters": 4,
        "ensemble_methods": 4,
        "explainability_tools": 2,
        "total_models": 14,
    },
    "features": [
        "Multi-class classification for tariff impact severity",
        "LSTM-based time series forecasting",
        "Advanced ensemble methods (voting, stacking, dynamic)",
        "SHAP-based model explainability",
        "Policy insight generation",
        "Model lifecycle management",
        "Performance tracking and optimization",
    ],
    "supported_model_types": [
        "Classification",
        "Multi-class Classification",
        "Binary Classification",
        "Time Series Forecasting",
        "Ensemble Methods",
        "Voting Ensembles",
        "Stacking Ensembles",
    ],
}


def get_package_info():
    """Get comprehensive package information"""
    return PACKAGE_INFO.copy()


def get_available_models():
    """Get list of all available model classes"""
    return {
        "classifiers": [
            TariffImpactClassifier,
            EconomicOutcomeClassifier,
            PolicyEffectivenessClassifier,
            IndustryVulnerabilityClassifier,
        ],
        "forecasters": [
            GDPImpactForecaster,
            TradeFlowForecaster,
            EmploymentForecaster,
            PriceImpactForecaster,
        ],
        "ensembles": [TIPMEnsemble, ModelVoting, StackingEnsemble, DynamicEnsemble],
    }


def create_default_model_manager():
    """Create and configure a default ML model manager"""
    manager = MLModelManager()
    manager.create_default_models()
    return manager


def get_model_summary():
    """Get a summary of all available models"""
    models = get_available_models()

    summary = {
        "total_models": sum(len(model_list) for model_list in models.values()),
        "categories": {},
    }

    for category, model_list in models.items():
        summary["categories"][category] = {
            "count": len(model_list),
            "models": [model.__name__ for model in model_list],
        }

    return summary


# Version compatibility check
def check_compatibility():
    """Check package compatibility and dependencies"""
    import sys

    compatibility_info = {
        "python_version": sys.version,
        "python_version_compatible": sys.version_info >= (3, 8),
        "required_packages": ["numpy", "pandas", "scikit-learn", "torch", "shap"],
        "optional_packages": ["xgboost", "lightgbm", "optuna"],
    }

    return compatibility_info


# Quick start function
def quick_start():
    """Quick start guide for using TIPM ML models"""
    print("πŸš€ TIPM ML Models Quick Start")
    print("=" * 40)

    # Create model manager
    manager = create_default_model_manager()

    print(f"βœ… Created {len(manager.models)} default models")
    print(f"πŸ“Š Classifiers: {len(manager.classifiers)}")
    print(f"πŸ“ˆ Forecasters: {len(manager.forecasters)}")
    print(f"🎯 Ensembles: {len(manager.ensembles)}")

    print("\nπŸ”§ Next steps:")
    print("1. Prepare your training data (X, y)")
    print("2. Train models: manager.train_all_models(X, y)")
    print("3. Make predictions: manager.predict(model_id, X)")
    print("4. Get explanations: manager.explain_prediction(model_id, X)")
    print(
        "5. Generate insights: manager.generate_policy_insights(model_id, explanation)"
    )

    return manager