Spaces:
Sleeping
Sleeping
update
Browse files- app.py +58 -49
- requirements.txt +6 -1
app.py
CHANGED
|
@@ -1,64 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
),
|
| 59 |
],
|
|
|
|
|
|
|
|
|
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import torch
|
| 4 |
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
import sklearn
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from datasets import load_dataset, DatasetDict
|
| 9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 10 |
|
| 11 |
+
# Automatically detect GPU or use CPU
|
| 12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
# Default model path
|
| 15 |
+
model_tokenizer_path = "zehui127/Omni-DNA-Multitask"
|
| 16 |
|
| 17 |
+
# Load tokenizer and model with trusted remote code
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_tokenizer_path, trust_remote_code=True)
|
| 19 |
+
model = AutoModelForCausalLM.from_pretrained(model_tokenizer_path, trust_remote_code=True).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# List of available tasks
|
| 22 |
+
tasks = ['H3', 'H4', 'H3K9ac', 'H3K14ac', 'H4ac', 'H3K4me1', 'H3K4me2', 'H3K4me3', 'H3K36me3', 'H3K79me3']
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
def preprocess_response(response, mask_token="[MASK]"):
|
| 25 |
+
"""Extracts the response after the [MASK] token."""
|
| 26 |
+
if mask_token in response:
|
| 27 |
+
response = response.split(mask_token, 1)[1]
|
| 28 |
+
response = re.sub(r'^[\sATGC]+', '', response)
|
| 29 |
+
return response
|
| 30 |
|
| 31 |
+
def generate(dna_sequence, task_type, sample_num=1):
|
| 32 |
+
"""
|
| 33 |
+
Generates a response based on the DNA sequence and selected task.
|
| 34 |
|
| 35 |
+
Args:
|
| 36 |
+
dna_sequence (str): The input DNA sequence.
|
| 37 |
+
task_type (str): The selected task type.
|
| 38 |
+
sample_num (int): Number of samples for the generation process.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
Returns:
|
| 41 |
+
str: Predicted function label.
|
| 42 |
+
"""
|
| 43 |
+
dna_sequence = dna_sequence + task_type +"[MASK]"
|
| 44 |
+
tokenized_message = tokenizer(
|
| 45 |
+
[dna_sequence], return_tensors='pt', return_token_type_ids=False, add_special_tokens=True
|
| 46 |
+
).to(device)
|
| 47 |
|
| 48 |
+
response = model.generate(**tokenized_message, max_new_tokens=sample_num, do_sample=False)
|
| 49 |
+
reply = tokenizer.batch_decode(response, skip_special_tokens=False)[0].replace(" ", "")
|
| 50 |
|
| 51 |
+
return extract_label(reply, task_type)
|
| 52 |
+
|
| 53 |
+
def extract_label(message, task_type):
|
| 54 |
+
"""Extracts the prediction label from the model's response."""
|
| 55 |
+
task_type = '[MASK]'
|
| 56 |
+
answer = message.split(task_type)[1]
|
| 57 |
+
match = re.search(r'\d+', answer)
|
| 58 |
+
return match.group() if match else "No valid prediction"
|
| 59 |
+
|
| 60 |
+
# Gradio interface
|
| 61 |
+
interface = gr.Interface(
|
| 62 |
+
fn=generate,
|
| 63 |
+
inputs=[
|
| 64 |
+
gr.Textbox(label="Input DNA Sequence", placeholder="Enter a DNA sequence"),
|
| 65 |
+
gr.Dropdown(choices=tasks, label="Select Task Type"),
|
|
|
|
| 66 |
],
|
| 67 |
+
outputs=gr.Textbox(label="Predicted Function"),
|
| 68 |
+
title="Omni-DNA Multitask Prediction",
|
| 69 |
+
description="Select a DNA-related task and input a sequence to generate function predictions.",
|
| 70 |
)
|
| 71 |
|
|
|
|
| 72 |
if __name__ == "__main__":
|
| 73 |
+
interface.launch()
|
requirements.txt
CHANGED
|
@@ -1 +1,6 @@
|
|
| 1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
huggingface_hub==0.25.2
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
gradio
|
| 5 |
+
datasets
|
| 6 |
+
ai2-olmo
|