Spaces:
Running
on
Zero
Running
on
Zero
wip reconstruction
Browse files- app.py +86 -139
- app.py.old +744 -0
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -14,7 +14,6 @@ from transformers import AutoTokenizer, GPT2LMHeadModel, set_seed
|
|
| 14 |
|
| 15 |
from schema import GDCCohortSchema # isort: skip
|
| 16 |
|
| 17 |
-
DEBUG = "DEBUG" in os.environ
|
| 18 |
EXAMPLE_INPUTS = [
|
| 19 |
"bam files for TCGA-BRCA",
|
| 20 |
"kidney or adrenal gland cancers with alcohol history",
|
|
@@ -45,57 +44,11 @@ FACETS_STR = ",".join(
|
|
| 45 |
]
|
| 46 |
)
|
| 47 |
|
| 48 |
-
if not DEBUG:
|
| 49 |
-
tok = AutoTokenizer.from_pretrained(TOKENIZER_NAME, token=AUTH_TOKEN)
|
| 50 |
-
# for some reason, pre-invoking tokenizer prevents endless generation when using guidance
|
| 51 |
-
# opened ticket here: https://github.com/guidance-ai/guidance/issues/1322
|
| 52 |
-
tok("foobar")
|
| 53 |
-
model = GPT2LMHeadModel.from_pretrained(MODEL_NAME, token=AUTH_TOKEN)
|
| 54 |
-
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
-
model = model.eval()
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
"content": [
|
| 62 |
-
{
|
| 63 |
-
"op": "in",
|
| 64 |
-
"content": {
|
| 65 |
-
"field": "cases.project.project_id",
|
| 66 |
-
"value": ["TCGA-BRCA"],
|
| 67 |
-
},
|
| 68 |
-
},
|
| 69 |
-
{
|
| 70 |
-
"op": "in",
|
| 71 |
-
"content": {
|
| 72 |
-
"field": "cases.project.program.name",
|
| 73 |
-
"value": ["TCGA"],
|
| 74 |
-
},
|
| 75 |
-
},
|
| 76 |
-
{
|
| 77 |
-
"op": "and",
|
| 78 |
-
"content": [
|
| 79 |
-
{
|
| 80 |
-
"op": ">=",
|
| 81 |
-
"content": {
|
| 82 |
-
"field": "cases.diagnoses.age_at_diagnosis",
|
| 83 |
-
"value": 7305,
|
| 84 |
-
},
|
| 85 |
-
},
|
| 86 |
-
{
|
| 87 |
-
"op": "<=",
|
| 88 |
-
"content": {
|
| 89 |
-
"field": "cases.diagnoses.age_at_diagnosis",
|
| 90 |
-
"value": 14610,
|
| 91 |
-
},
|
| 92 |
-
},
|
| 93 |
-
],
|
| 94 |
-
},
|
| 95 |
-
],
|
| 96 |
-
},
|
| 97 |
-
indent=4,
|
| 98 |
-
)
|
| 99 |
|
| 100 |
|
| 101 |
# Generate cohort filter JSON from free text
|
|
@@ -110,8 +63,6 @@ def generate_filter(query: str) -> str:
|
|
| 110 |
Returns:
|
| 111 |
str: JSON structured GDC cohort filter
|
| 112 |
"""
|
| 113 |
-
if DEBUG:
|
| 114 |
-
return DUMMY_FILTER
|
| 115 |
|
| 116 |
set_seed(42)
|
| 117 |
lm = Transformers(
|
|
@@ -525,7 +476,7 @@ function download_cases(filter_str) {{
|
|
| 525 |
"""
|
| 526 |
|
| 527 |
with gr.Blocks(css_paths="style.css") as demo:
|
| 528 |
-
gr.Markdown("# GDC Cohort Copilot")
|
| 529 |
|
| 530 |
with gr.Row(equal_height=True):
|
| 531 |
with gr.Column(scale=7):
|
|
@@ -593,22 +544,22 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
| 593 |
|
| 594 |
with gr.Row():
|
| 595 |
# Tab selectors
|
| 596 |
-
tab_buttons =
|
| 597 |
with gr.Column(scale=1, min_width=250):
|
| 598 |
-
for
|
| 599 |
tab_button = gr.Button(
|
| 600 |
-
value=
|
| 601 |
-
variant="primary" if
|
| 602 |
)
|
| 603 |
-
tab_buttons
|
| 604 |
|
| 605 |
# Filter cards
|
| 606 |
-
tab_containers =
|
| 607 |
-
filter_cards =
|
| 608 |
for tab in CONFIG["tabs"]:
|
| 609 |
visible = tab["name"] == TAB_NAMES[0] # default first card
|
| 610 |
with gr.Column(scale=4, visible=visible) as tab_container:
|
| 611 |
-
tab_containers
|
| 612 |
with gr.Row(elem_classes=["card-group"]):
|
| 613 |
for card in tab["cards"]:
|
| 614 |
if isinstance(card["values"], list):
|
|
@@ -644,104 +595,100 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
| 644 |
elem_classes=["filter-card", "filter-range"],
|
| 645 |
)
|
| 646 |
|
| 647 |
-
filter_cards
|
| 648 |
|
| 649 |
# Assign tab buttons to toggle visibility
|
| 650 |
-
for tab_button, name in zip(tab_buttons, TAB_NAMES):
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
|
| 658 |
# Enable case download
|
| 659 |
-
case_download.click(
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
)
|
| 665 |
|
| 666 |
# Load initial counts on startup
|
| 667 |
-
demo.load(
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
)
|
| 673 |
|
| 674 |
# Update checkboxes on filter generation
|
| 675 |
# Also update JSON based on checkboxes
|
| 676 |
# - relying on checkbox update to do this fires multiple times
|
| 677 |
# - also propagates new model selections after json is updated
|
| 678 |
# Also this way it shows the model generated JSON
|
| 679 |
-
text_input.submit(
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
).success(
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
)
|
| 690 |
|
| 691 |
# Update JSON based on cards
|
| 692 |
# Keep user `input` event listener (vs `change`) otherwise will fire multiple times
|
| 693 |
# Seems like otherwise it should be cyclical, Gradio must have some logic to prevent infinite loops
|
| 694 |
-
for filter_card in filter_cards:
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
|
| 720 |
# Enable functionality of the active filter selectors
|
| 721 |
-
active_selections.input(
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
).success(
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
)
|
| 732 |
|
| 733 |
# Update checkboxes after executing filter query
|
| 734 |
-
json_output.change(
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
)
|
| 740 |
-
|
| 741 |
-
def fn(a: int, b: int, c: list[str]) -> tuple[int, str]:
|
| 742 |
-
return a + b, c[a:b]
|
| 743 |
|
| 744 |
-
gr.api(fn, api_name="add_and_slice")
|
| 745 |
# gr.api(generate_filter, api_name="generate_filter")
|
| 746 |
|
| 747 |
if __name__ == "__main__":
|
|
|
|
| 14 |
|
| 15 |
from schema import GDCCohortSchema # isort: skip
|
| 16 |
|
|
|
|
| 17 |
EXAMPLE_INPUTS = [
|
| 18 |
"bam files for TCGA-BRCA",
|
| 19 |
"kidney or adrenal gland cancers with alcohol history",
|
|
|
|
| 44 |
]
|
| 45 |
)
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
tok = AutoTokenizer.from_pretrained(TOKENIZER_NAME, token=AUTH_TOKEN)
|
| 49 |
+
model = GPT2LMHeadModel.from_pretrained(MODEL_NAME, token=AUTH_TOKEN)
|
| 50 |
+
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 51 |
+
model = model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
|
| 54 |
# Generate cohort filter JSON from free text
|
|
|
|
| 63 |
Returns:
|
| 64 |
str: JSON structured GDC cohort filter
|
| 65 |
"""
|
|
|
|
|
|
|
| 66 |
|
| 67 |
set_seed(42)
|
| 68 |
lm = Transformers(
|
|
|
|
| 476 |
"""
|
| 477 |
|
| 478 |
with gr.Blocks(css_paths="style.css") as demo:
|
| 479 |
+
gr.Markdown("# GDC Cohort Copilot - UNDER CONSTRUCTION")
|
| 480 |
|
| 481 |
with gr.Row(equal_height=True):
|
| 482 |
with gr.Column(scale=7):
|
|
|
|
| 544 |
|
| 545 |
with gr.Row():
|
| 546 |
# Tab selectors
|
| 547 |
+
tab_buttons = dict()
|
| 548 |
with gr.Column(scale=1, min_width=250):
|
| 549 |
+
for tab_name in TAB_NAMES:
|
| 550 |
tab_button = gr.Button(
|
| 551 |
+
value=tab_name,
|
| 552 |
+
variant="primary" if tab_name == TAB_NAMES[0] else "secondary",
|
| 553 |
)
|
| 554 |
+
tab_buttons[tab_name] = tab_button
|
| 555 |
|
| 556 |
# Filter cards
|
| 557 |
+
tab_containers = dict()
|
| 558 |
+
filter_cards = dict()
|
| 559 |
for tab in CONFIG["tabs"]:
|
| 560 |
visible = tab["name"] == TAB_NAMES[0] # default first card
|
| 561 |
with gr.Column(scale=4, visible=visible) as tab_container:
|
| 562 |
+
tab_containers[tab["name"]] = tab_container
|
| 563 |
with gr.Row(elem_classes=["card-group"]):
|
| 564 |
for card in tab["cards"]:
|
| 565 |
if isinstance(card["values"], list):
|
|
|
|
| 595 |
elem_classes=["filter-card", "filter-range"],
|
| 596 |
)
|
| 597 |
|
| 598 |
+
filter_cards[card["name"]] = filter_card
|
| 599 |
|
| 600 |
# Assign tab buttons to toggle visibility
|
| 601 |
+
# for tab_button, name in zip(tab_buttons, TAB_NAMES):
|
| 602 |
+
# tab_button.click(
|
| 603 |
+
# fn=set_active_tab,
|
| 604 |
+
# inputs=gr.State(name),
|
| 605 |
+
# outputs=tab_containers + tab_buttons,
|
| 606 |
+
# api_name=False,
|
| 607 |
+
# )
|
| 608 |
|
| 609 |
# Enable case download
|
| 610 |
+
# case_download.click(
|
| 611 |
+
# fn=None, # apparently this isn't the same as not specifying it
|
| 612 |
+
# js=DOWNLOAD_CASES_JS,
|
| 613 |
+
# inputs=json_output,
|
| 614 |
+
# api_name=False,
|
| 615 |
+
# )
|
| 616 |
|
| 617 |
# Load initial counts on startup
|
| 618 |
+
# demo.load(
|
| 619 |
+
# fn=update_cards_with_counts,
|
| 620 |
+
# inputs=[gr.State("")] + filter_cards,
|
| 621 |
+
# outputs=filter_cards + [case_counter],
|
| 622 |
+
# api_name=False,
|
| 623 |
+
# )
|
| 624 |
|
| 625 |
# Update checkboxes on filter generation
|
| 626 |
# Also update JSON based on checkboxes
|
| 627 |
# - relying on checkbox update to do this fires multiple times
|
| 628 |
# - also propagates new model selections after json is updated
|
| 629 |
# Also this way it shows the model generated JSON
|
| 630 |
+
# text_input.submit(
|
| 631 |
+
# fn=process_query,
|
| 632 |
+
# inputs=text_input,
|
| 633 |
+
# outputs=filter_cards + [json_output],
|
| 634 |
+
# api_name=False,
|
| 635 |
+
# ).success(
|
| 636 |
+
# fn=update_active_selections,
|
| 637 |
+
# inputs=filter_cards,
|
| 638 |
+
# outputs=[active_selections],
|
| 639 |
+
# api_name=False,
|
| 640 |
+
# )
|
| 641 |
|
| 642 |
# Update JSON based on cards
|
| 643 |
# Keep user `input` event listener (vs `change`) otherwise will fire multiple times
|
| 644 |
# Seems like otherwise it should be cyclical, Gradio must have some logic to prevent infinite loops
|
| 645 |
+
# for filter_card in filter_cards:
|
| 646 |
+
# if isinstance(filter_card, RangeSlider):
|
| 647 |
+
# filter_card.release(
|
| 648 |
+
# fn=update_json_from_cards,
|
| 649 |
+
# inputs=filter_cards,
|
| 650 |
+
# outputs=json_output,
|
| 651 |
+
# api_name=False,
|
| 652 |
+
# ).success(
|
| 653 |
+
# fn=update_active_selections,
|
| 654 |
+
# inputs=filter_cards,
|
| 655 |
+
# outputs=[active_selections],
|
| 656 |
+
# api_name=False,
|
| 657 |
+
# )
|
| 658 |
+
# else:
|
| 659 |
+
# filter_card.input(
|
| 660 |
+
# fn=update_json_from_cards,
|
| 661 |
+
# inputs=filter_cards,
|
| 662 |
+
# outputs=json_output,
|
| 663 |
+
# api_name=False,
|
| 664 |
+
# ).success(
|
| 665 |
+
# fn=update_active_selections,
|
| 666 |
+
# inputs=filter_cards,
|
| 667 |
+
# outputs=[active_selections],
|
| 668 |
+
# api_name=False,
|
| 669 |
+
# )
|
| 670 |
|
| 671 |
# Enable functionality of the active filter selectors
|
| 672 |
+
# active_selections.input(
|
| 673 |
+
# fn=update_cards_from_active,
|
| 674 |
+
# inputs=[active_selections] + filter_cards,
|
| 675 |
+
# outputs=[active_selections] + filter_cards,
|
| 676 |
+
# api_name=False,
|
| 677 |
+
# ).success(
|
| 678 |
+
# fn=update_json_from_cards,
|
| 679 |
+
# inputs=filter_cards,
|
| 680 |
+
# outputs=json_output,
|
| 681 |
+
# api_name=False,
|
| 682 |
+
# )
|
| 683 |
|
| 684 |
# Update checkboxes after executing filter query
|
| 685 |
+
# json_output.change(
|
| 686 |
+
# fn=update_cards_with_counts,
|
| 687 |
+
# inputs=[json_output] + filter_cards,
|
| 688 |
+
# outputs=filter_cards + [case_counter],
|
| 689 |
+
# api_name=False,
|
| 690 |
+
# )
|
|
|
|
|
|
|
|
|
|
| 691 |
|
|
|
|
| 692 |
# gr.api(generate_filter, api_name="generate_filter")
|
| 693 |
|
| 694 |
if __name__ == "__main__":
|
app.py.old
ADDED
|
@@ -0,0 +1,744 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from collections import defaultdict
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import requests
|
| 7 |
+
import spaces
|
| 8 |
+
import torch
|
| 9 |
+
import yaml
|
| 10 |
+
from gradio_rangeslider import RangeSlider
|
| 11 |
+
from guidance import json as gen_json
|
| 12 |
+
from guidance.models import Transformers
|
| 13 |
+
from transformers import AutoTokenizer, GPT2LMHeadModel, set_seed
|
| 14 |
+
|
| 15 |
+
from schema import GDCCohortSchema # isort: skip
|
| 16 |
+
|
| 17 |
+
DEBUG = "DEBUG" in os.environ
|
| 18 |
+
EXAMPLE_INPUTS = [
|
| 19 |
+
"bam files for TCGA-BRCA",
|
| 20 |
+
"kidney or adrenal gland cancers with alcohol history",
|
| 21 |
+
"tumor samples from male patients with acute myeloid lymphoma",
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
GDC_CASES_API_ENDPOINT = "https://api.gdc.cancer.gov/cases"
|
| 25 |
+
MODEL_NAME = "uc-ctds/gdc-cohort-llm-gpt2-s1M"
|
| 26 |
+
TOKENIZER_NAME = MODEL_NAME
|
| 27 |
+
AUTH_TOKEN = os.environ.get("HF_TOKEN", False) # HF_TOKEN must be set to use auth
|
| 28 |
+
|
| 29 |
+
with open("config.yaml", "r") as f:
|
| 30 |
+
CONFIG = yaml.safe_load(f)
|
| 31 |
+
|
| 32 |
+
TAB_NAMES = [tab["name"] for tab in CONFIG["tabs"]]
|
| 33 |
+
CARD_NAMES = [card["name"] for tab in CONFIG["tabs"] for card in tab["cards"]]
|
| 34 |
+
CARD_FIELDS = [card["field"] for tab in CONFIG["tabs"] for card in tab["cards"]]
|
| 35 |
+
CARD_2_FIELD = dict(list(zip(CARD_NAMES, CARD_FIELDS)))
|
| 36 |
+
CARD_2_VALUES = {
|
| 37 |
+
card["name"]: card["values"] for tab in CONFIG["tabs"] for card in tab["cards"]
|
| 38 |
+
}
|
| 39 |
+
FACETS_STR = ",".join(
|
| 40 |
+
[
|
| 41 |
+
f.replace("cases.", "")
|
| 42 |
+
for f, n in zip(CARD_FIELDS, CARD_NAMES)
|
| 43 |
+
if not isinstance(CARD_2_VALUES[n], dict)
|
| 44 |
+
# ^ skip range facets in bin counts
|
| 45 |
+
]
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
if not DEBUG:
|
| 49 |
+
tok = AutoTokenizer.from_pretrained(TOKENIZER_NAME, token=AUTH_TOKEN)
|
| 50 |
+
# for some reason, pre-invoking tokenizer prevents endless generation when using guidance
|
| 51 |
+
# opened ticket here: https://github.com/guidance-ai/guidance/issues/1322
|
| 52 |
+
tok("foobar")
|
| 53 |
+
model = GPT2LMHeadModel.from_pretrained(MODEL_NAME, token=AUTH_TOKEN)
|
| 54 |
+
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
+
model = model.eval()
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
DUMMY_FILTER = json.dumps(
|
| 59 |
+
{
|
| 60 |
+
"op": "and",
|
| 61 |
+
"content": [
|
| 62 |
+
{
|
| 63 |
+
"op": "in",
|
| 64 |
+
"content": {
|
| 65 |
+
"field": "cases.project.project_id",
|
| 66 |
+
"value": ["TCGA-BRCA"],
|
| 67 |
+
},
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"op": "in",
|
| 71 |
+
"content": {
|
| 72 |
+
"field": "cases.project.program.name",
|
| 73 |
+
"value": ["TCGA"],
|
| 74 |
+
},
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"op": "and",
|
| 78 |
+
"content": [
|
| 79 |
+
{
|
| 80 |
+
"op": ">=",
|
| 81 |
+
"content": {
|
| 82 |
+
"field": "cases.diagnoses.age_at_diagnosis",
|
| 83 |
+
"value": 7305,
|
| 84 |
+
},
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"op": "<=",
|
| 88 |
+
"content": {
|
| 89 |
+
"field": "cases.diagnoses.age_at_diagnosis",
|
| 90 |
+
"value": 14610,
|
| 91 |
+
},
|
| 92 |
+
},
|
| 93 |
+
],
|
| 94 |
+
},
|
| 95 |
+
],
|
| 96 |
+
},
|
| 97 |
+
indent=4,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# Generate cohort filter JSON from free text
|
| 102 |
+
@spaces.GPU(duration=15)
|
| 103 |
+
def generate_filter(query: str) -> str:
|
| 104 |
+
"""
|
| 105 |
+
Converts a free text description of a cancer cohort into a GDC structured cohort filter.
|
| 106 |
+
|
| 107 |
+
Args:
|
| 108 |
+
query (str): The free text cohort description
|
| 109 |
+
|
| 110 |
+
Returns:
|
| 111 |
+
str: JSON structured GDC cohort filter
|
| 112 |
+
"""
|
| 113 |
+
if DEBUG:
|
| 114 |
+
return DUMMY_FILTER
|
| 115 |
+
|
| 116 |
+
set_seed(42)
|
| 117 |
+
lm = Transformers(
|
| 118 |
+
model=model,
|
| 119 |
+
tokenizer=tok,
|
| 120 |
+
# sampling_params=SamplingParams,
|
| 121 |
+
)
|
| 122 |
+
lm += query
|
| 123 |
+
lm += gen_json(
|
| 124 |
+
name="cohort", schema=GDCCohortSchema, temperature=0, max_tokens=1024
|
| 125 |
+
)
|
| 126 |
+
cohort_filter = lm["cohort"]
|
| 127 |
+
cohort_filter = json.dumps(json.loads(cohort_filter), indent=4)
|
| 128 |
+
|
| 129 |
+
return cohort_filter
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# Transform query to filter to checkbox selections (and update json box)
|
| 133 |
+
def process_query(query):
|
| 134 |
+
# Generate filter
|
| 135 |
+
cohort_filter_str = generate_filter(query)
|
| 136 |
+
cohort_filter = json.loads(cohort_filter_str)
|
| 137 |
+
|
| 138 |
+
# Pre-flatten nested ops for easier mapping in next step
|
| 139 |
+
flattened_ops = []
|
| 140 |
+
for op in cohort_filter["content"]:
|
| 141 |
+
# nested `and` can only be 1 deep based on schema
|
| 142 |
+
if op["op"] == "and":
|
| 143 |
+
flattened_ops.extend(op["content"])
|
| 144 |
+
else:
|
| 145 |
+
flattened_ops.append(op)
|
| 146 |
+
|
| 147 |
+
# Prepare and validate generated filters
|
| 148 |
+
generated_field_2_values = dict()
|
| 149 |
+
for op in flattened_ops:
|
| 150 |
+
assert op["op"] in [
|
| 151 |
+
"in",
|
| 152 |
+
"=",
|
| 153 |
+
"<",
|
| 154 |
+
">",
|
| 155 |
+
"<=",
|
| 156 |
+
">=",
|
| 157 |
+
], f"Unknown handling for op: {op}"
|
| 158 |
+
content = op["content"]
|
| 159 |
+
field, value = content["field"], content["value"]
|
| 160 |
+
# comparators are ints so can convert to g/lte by add/sub 1
|
| 161 |
+
if op["op"] == "<":
|
| 162 |
+
op["op"] = "<="
|
| 163 |
+
value -= 1
|
| 164 |
+
elif op["op"] == ">":
|
| 165 |
+
op["op"] = ">="
|
| 166 |
+
value += 1
|
| 167 |
+
elif op["op"] == "=":
|
| 168 |
+
# convert = to <=,>= ops so it can be filled into card
|
| 169 |
+
flattened_ops.append(
|
| 170 |
+
{
|
| 171 |
+
"op": "<=",
|
| 172 |
+
"content": content,
|
| 173 |
+
}
|
| 174 |
+
)
|
| 175 |
+
flattened_ops.append(
|
| 176 |
+
{
|
| 177 |
+
"op": ">=",
|
| 178 |
+
"content": content,
|
| 179 |
+
}
|
| 180 |
+
)
|
| 181 |
+
continue
|
| 182 |
+
|
| 183 |
+
if op["op"] != "in":
|
| 184 |
+
# comp ops will duplicate name, disambiguate by appending comp
|
| 185 |
+
field += "_" + op["op"]
|
| 186 |
+
|
| 187 |
+
if field in generated_field_2_values:
|
| 188 |
+
raise ValueError(f"{field} is ambiguously duplicated")
|
| 189 |
+
generated_field_2_values[field] = value
|
| 190 |
+
|
| 191 |
+
# Map filter selections to cards
|
| 192 |
+
card_updates = []
|
| 193 |
+
for card_name, card_field in zip(CARD_NAMES, CARD_FIELDS):
|
| 194 |
+
# Need to update all cards so use all possible cards as ref
|
| 195 |
+
default_values = CARD_2_VALUES[card_name]
|
| 196 |
+
if isinstance(default_values, list):
|
| 197 |
+
updated_values = []
|
| 198 |
+
updated_choices = default_values # reset value
|
| 199 |
+
possible_values = set(updated_choices)
|
| 200 |
+
if card_field in generated_field_2_values:
|
| 201 |
+
# check ref against generated
|
| 202 |
+
selected_values = generated_field_2_values.pop(card_field)
|
| 203 |
+
unmatched_values = []
|
| 204 |
+
for selected_value in selected_values:
|
| 205 |
+
if selected_value in possible_values:
|
| 206 |
+
updated_values.append(selected_value)
|
| 207 |
+
else:
|
| 208 |
+
# model hallucination?
|
| 209 |
+
unmatched_values.append(selected_value)
|
| 210 |
+
if len(unmatched_values) > 0:
|
| 211 |
+
generated_field_2_values[card_field] = unmatched_values
|
| 212 |
+
update_obj = gr.update(
|
| 213 |
+
choices=updated_choices,
|
| 214 |
+
value=updated_values, # will override existing selections
|
| 215 |
+
)
|
| 216 |
+
elif isinstance(default_values, dict):
|
| 217 |
+
# range-slider, maybe other options in the future?
|
| 218 |
+
assert (
|
| 219 |
+
default_values["type"] == "range"
|
| 220 |
+
), f"Expected range slider for card {card_name}"
|
| 221 |
+
# Need to handle if model outputs flat range or nested range
|
| 222 |
+
card_field_gte = card_field + "_>="
|
| 223 |
+
card_field_lte = card_field + "_<="
|
| 224 |
+
_min = default_values["min"]
|
| 225 |
+
_max = default_values["max"]
|
| 226 |
+
lo = generated_field_2_values.pop(card_field_gte, _min)
|
| 227 |
+
hi = generated_field_2_values.pop(card_field_lte, _max)
|
| 228 |
+
assert (
|
| 229 |
+
lo >= _min
|
| 230 |
+
), f"Generated lower bound ({lo}) less than minimum allowable value ({_min})"
|
| 231 |
+
assert (
|
| 232 |
+
hi <= _max
|
| 233 |
+
), f"Generated upper bound ({hi}) greater than maximum allowable value ({_max})"
|
| 234 |
+
update_obj = gr.update(value=(lo, hi))
|
| 235 |
+
else:
|
| 236 |
+
raise ValueError(f"Unknown values for card {card_name}")
|
| 237 |
+
card_updates.append(update_obj)
|
| 238 |
+
# generated_field_2_values will have remaining, unmatched values
|
| 239 |
+
# edit: updated json schema with enumerated fields prevents unmatched fields
|
| 240 |
+
print(f"Unmatched values in model generation: {generated_field_2_values}")
|
| 241 |
+
return card_updates + [gr.update(value=cohort_filter_str)]
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
# Update JSON based on checkbox selections
|
| 245 |
+
def update_json_from_cards(*selected_filters_per_card):
|
| 246 |
+
ops = []
|
| 247 |
+
for card_name, selected_filters in zip(CARD_NAMES, selected_filters_per_card):
|
| 248 |
+
# use the default values to determine card type (checkbox, range, etc)
|
| 249 |
+
default_values = CARD_2_VALUES[card_name]
|
| 250 |
+
if isinstance(default_values, list):
|
| 251 |
+
# checkbox
|
| 252 |
+
if len(selected_filters) > 0:
|
| 253 |
+
base_values = []
|
| 254 |
+
for selected_value in selected_filters:
|
| 255 |
+
base_value = get_base_value(selected_value)
|
| 256 |
+
base_values.append(base_value)
|
| 257 |
+
content = {
|
| 258 |
+
"field": CARD_2_FIELD[card_name],
|
| 259 |
+
"value": base_values,
|
| 260 |
+
}
|
| 261 |
+
op = {
|
| 262 |
+
"op": "in",
|
| 263 |
+
"content": content,
|
| 264 |
+
}
|
| 265 |
+
ops.append(op)
|
| 266 |
+
elif isinstance(default_values, dict):
|
| 267 |
+
# range-slider, maybe other options in the future?
|
| 268 |
+
assert (
|
| 269 |
+
default_values["type"] == "range"
|
| 270 |
+
), f"Expected range slider for card {card_name}"
|
| 271 |
+
lo, hi = selected_filters
|
| 272 |
+
subops = []
|
| 273 |
+
for val, limit, comp in [
|
| 274 |
+
(lo, default_values["min"], ">="),
|
| 275 |
+
(hi, default_values["max"], "<="),
|
| 276 |
+
]:
|
| 277 |
+
# only add range filter if not default
|
| 278 |
+
if val == limit:
|
| 279 |
+
continue
|
| 280 |
+
subop = {
|
| 281 |
+
"op": comp,
|
| 282 |
+
"content": {
|
| 283 |
+
"field": CARD_2_FIELD[card_name],
|
| 284 |
+
"value": int(val),
|
| 285 |
+
},
|
| 286 |
+
}
|
| 287 |
+
subops.append(subop)
|
| 288 |
+
if len(subops) > 0:
|
| 289 |
+
ops.append({"op": "and", "content": subops})
|
| 290 |
+
else:
|
| 291 |
+
raise ValueError(f"Unknown values for card {card_name}")
|
| 292 |
+
|
| 293 |
+
cohort_filter = {
|
| 294 |
+
"op": "and",
|
| 295 |
+
"content": ops,
|
| 296 |
+
}
|
| 297 |
+
filter_json = json.dumps(cohort_filter, indent=4)
|
| 298 |
+
return gr.update(value=filter_json)
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
# Execute GDC API query and prepare checkbox + case counter updates
|
| 302 |
+
# Preserve prior selections
|
| 303 |
+
def update_cards_with_counts(cohort_filter: str, *selected_filters_per_card):
|
| 304 |
+
card_2_selections = dict(list(zip(CARD_NAMES, selected_filters_per_card)))
|
| 305 |
+
|
| 306 |
+
# Execute GDC API query
|
| 307 |
+
params = {
|
| 308 |
+
"facets": FACETS_STR,
|
| 309 |
+
"pretty": "false",
|
| 310 |
+
"format": "JSON",
|
| 311 |
+
"size": 0,
|
| 312 |
+
}
|
| 313 |
+
|
| 314 |
+
if cohort_filter:
|
| 315 |
+
# patch for range selectors which use nested `and`
|
| 316 |
+
# seems `facets` and nested `and` don't play well together
|
| 317 |
+
# so flatten direct nested `and` for query execution only
|
| 318 |
+
# this is equivalent since our top-level is always `and`
|
| 319 |
+
# keeping nested `and` for presentation and model generations though
|
| 320 |
+
temp = json.loads(cohort_filter)
|
| 321 |
+
ops = temp["content"]
|
| 322 |
+
new_ops = []
|
| 323 |
+
for op in ops:
|
| 324 |
+
# assumes no deeper than single level nesting
|
| 325 |
+
if op["op"] == "and":
|
| 326 |
+
for subop in op["content"]:
|
| 327 |
+
new_ops.append(subop)
|
| 328 |
+
else:
|
| 329 |
+
new_ops.append(op)
|
| 330 |
+
temp["content"] = new_ops
|
| 331 |
+
cohort_filter = json.dumps(temp)
|
| 332 |
+
params["filters"] = cohort_filter
|
| 333 |
+
|
| 334 |
+
response = requests.get(GDC_CASES_API_ENDPOINT, params=params)
|
| 335 |
+
if not response.ok:
|
| 336 |
+
raise Exception(f"API error: {response.status_code}\n{response.json()}")
|
| 337 |
+
temp = response.json()
|
| 338 |
+
|
| 339 |
+
# Update checkboxes with bin counts
|
| 340 |
+
card_updates = []
|
| 341 |
+
all_counts = temp["data"]["aggregations"]
|
| 342 |
+
for card_name in CARD_NAMES:
|
| 343 |
+
card_field = CARD_2_FIELD[card_name]
|
| 344 |
+
card_field = card_field.replace("cases.", "")
|
| 345 |
+
card_values = CARD_2_VALUES[card_name]
|
| 346 |
+
if isinstance(card_values, list):
|
| 347 |
+
# value checkboxes
|
| 348 |
+
choice_mapping = {}
|
| 349 |
+
updated_choices = []
|
| 350 |
+
card_counts = {
|
| 351 |
+
x["key"]: x["doc_count"] for x in all_counts[card_field]["buckets"]
|
| 352 |
+
}
|
| 353 |
+
for value_name in card_values:
|
| 354 |
+
if value_name in card_counts:
|
| 355 |
+
value_str = prepare_value_count(
|
| 356 |
+
value_name,
|
| 357 |
+
card_counts[value_name],
|
| 358 |
+
)
|
| 359 |
+
# track possible choices to use as values
|
| 360 |
+
choice_mapping[value_name] = value_str
|
| 361 |
+
updated_choices.append(value_str)
|
| 362 |
+
|
| 363 |
+
# Align prior selections with new choices
|
| 364 |
+
updated_values = []
|
| 365 |
+
for selected_value in card_2_selections[card_name]:
|
| 366 |
+
base_value = get_base_value(selected_value)
|
| 367 |
+
if base_value not in choice_mapping:
|
| 368 |
+
# Re-add choices which now presumably have 0 counts
|
| 369 |
+
choice_mapping[base_value] = prepare_value_count(base_value, 0)
|
| 370 |
+
updated_values.append(choice_mapping[base_value])
|
| 371 |
+
|
| 372 |
+
update_obj = gr.update(
|
| 373 |
+
choices=updated_choices,
|
| 374 |
+
value=updated_values,
|
| 375 |
+
)
|
| 376 |
+
elif isinstance(card_values, dict):
|
| 377 |
+
# range-slider, maybe other options in the future?
|
| 378 |
+
assert (
|
| 379 |
+
card_values["type"] == "range"
|
| 380 |
+
), f"Expected range slider for card {card_name}"
|
| 381 |
+
# for range slider, nothing to actually do!
|
| 382 |
+
update_obj = gr.update()
|
| 383 |
+
else:
|
| 384 |
+
raise ValueError(f"Unknown values for card {card_name}")
|
| 385 |
+
|
| 386 |
+
card_updates.append(update_obj)
|
| 387 |
+
|
| 388 |
+
case_count = temp["data"]["pagination"]["total"]
|
| 389 |
+
|
| 390 |
+
return card_updates + [gr.update(value=f"{case_count} Cases")]
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def update_active_selections(*selected_filters_per_card):
|
| 394 |
+
choices = []
|
| 395 |
+
for card_name, selected_filters in zip(CARD_NAMES, selected_filters_per_card):
|
| 396 |
+
# use the default values to determine card type (checkbox, range, etc)
|
| 397 |
+
default_values = CARD_2_VALUES[card_name]
|
| 398 |
+
if isinstance(default_values, list):
|
| 399 |
+
# checkbox
|
| 400 |
+
for selected_value in selected_filters:
|
| 401 |
+
base_value = get_base_value(selected_value)
|
| 402 |
+
choices.append(f"{card_name.upper()}: {base_value}")
|
| 403 |
+
elif isinstance(default_values, dict):
|
| 404 |
+
# range-slider, maybe other options in the future?
|
| 405 |
+
assert (
|
| 406 |
+
default_values["type"] == "range"
|
| 407 |
+
), f"Expected range slider for card {card_name}"
|
| 408 |
+
lo, hi = selected_filters
|
| 409 |
+
if lo != default_values["min"] or hi != default_values["max"]:
|
| 410 |
+
# only add range filter if not default
|
| 411 |
+
lo, hi = int(lo), int(hi)
|
| 412 |
+
choices.append(f"{card_name.upper()}: {lo}-{hi}")
|
| 413 |
+
else:
|
| 414 |
+
raise ValueError(f"Unknown values for card {card_name}")
|
| 415 |
+
|
| 416 |
+
return gr.update(choices=choices, value=choices)
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def update_cards_from_active(current_selections, *selected_filters_per_card):
|
| 420 |
+
# active selector uses a flattened list so re-agg values under card groups
|
| 421 |
+
grouped_selections = defaultdict(set)
|
| 422 |
+
for k_v in current_selections:
|
| 423 |
+
idx = k_v.find(": ")
|
| 424 |
+
k, v = k_v[:idx], k_v[idx + 2 :]
|
| 425 |
+
grouped_selections[k].add(v)
|
| 426 |
+
|
| 427 |
+
card_updates = []
|
| 428 |
+
for card_name, selected_filters in zip(CARD_NAMES, selected_filters_per_card):
|
| 429 |
+
# use the default values to determine card type (checkbox, range, etc)
|
| 430 |
+
default_values = CARD_2_VALUES[card_name]
|
| 431 |
+
if isinstance(default_values, list):
|
| 432 |
+
# checkbox
|
| 433 |
+
updated_values = []
|
| 434 |
+
for selected_value in selected_filters:
|
| 435 |
+
base_value = get_base_value(selected_value)
|
| 436 |
+
if base_value in grouped_selections[card_name.upper()]:
|
| 437 |
+
updated_values.append(selected_value)
|
| 438 |
+
update_obj = gr.update(value=updated_values)
|
| 439 |
+
elif isinstance(default_values, dict):
|
| 440 |
+
# range-slider, maybe other options in the future?
|
| 441 |
+
assert (
|
| 442 |
+
default_values["type"] == "range"
|
| 443 |
+
), f"Expected range slider for card {card_name}"
|
| 444 |
+
# the active selector cannot change range values
|
| 445 |
+
# so if present as an active selection, no action is needed
|
| 446 |
+
# otherwise, reset entire range selector
|
| 447 |
+
if card_name.upper() in grouped_selections:
|
| 448 |
+
update_obj = gr.update()
|
| 449 |
+
else:
|
| 450 |
+
update_obj = gr.update(
|
| 451 |
+
value=(
|
| 452 |
+
default_values["min"],
|
| 453 |
+
default_values["max"],
|
| 454 |
+
)
|
| 455 |
+
)
|
| 456 |
+
else:
|
| 457 |
+
raise ValueError(f"Unknown values for card {card_name}")
|
| 458 |
+
|
| 459 |
+
card_updates.append(update_obj)
|
| 460 |
+
|
| 461 |
+
# also remove unselected value as possible choice
|
| 462 |
+
active_selection_update = gr.update(choices=current_selections)
|
| 463 |
+
return [active_selection_update] + card_updates
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
def prepare_value_count(value, count):
|
| 467 |
+
return f"{value} [{count}]"
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
def get_base_value(value):
|
| 471 |
+
if " [" in value:
|
| 472 |
+
value = value[: value.rfind(" [")]
|
| 473 |
+
return value
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
# Tab selection helper
|
| 477 |
+
def set_active_tab(selected_tab):
|
| 478 |
+
visibles = [gr.update(visible=(tab == selected_tab)) for tab in TAB_NAMES]
|
| 479 |
+
elem_classes = [
|
| 480 |
+
gr.update(variant="primary" if tab == selected_tab else "secondary")
|
| 481 |
+
for tab in TAB_NAMES
|
| 482 |
+
]
|
| 483 |
+
return visibles + elem_classes
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
DOWNLOAD_CASES_JS = f"""
|
| 487 |
+
function download_cases(filter_str) {{
|
| 488 |
+
const params = new URLSearchParams();
|
| 489 |
+
params.set('fields', 'case_id');
|
| 490 |
+
params.set('format', 'JSON');
|
| 491 |
+
params.set('size', 100000);
|
| 492 |
+
params.set('filters', filter_str);
|
| 493 |
+
const url = "{GDC_CASES_API_ENDPOINT}?" + params.toString();
|
| 494 |
+
|
| 495 |
+
const button = document.getElementById("download-btn");
|
| 496 |
+
button.innerHTML = '<div class="spinner"><\div>';
|
| 497 |
+
button.disabled = true;
|
| 498 |
+
|
| 499 |
+
fetch(url).then(resp => {{
|
| 500 |
+
if (!resp.ok) throw new Error("Failed to fetch TSV.");
|
| 501 |
+
return resp.json();
|
| 502 |
+
}})
|
| 503 |
+
.then(data => {{
|
| 504 |
+
const ids = data.data.hits.map(item => item.id);
|
| 505 |
+
const text = ids.join("\\n");
|
| 506 |
+
const blob = new Blob([text], {{type: "text/plain"}});
|
| 507 |
+
return blob;
|
| 508 |
+
}})
|
| 509 |
+
.then(blob => {{
|
| 510 |
+
const url = URL.createObjectURL(blob);
|
| 511 |
+
const a = document.createElement('a');
|
| 512 |
+
a.href = url;
|
| 513 |
+
a.download = "gdc_cohort_case_ids.tsv";
|
| 514 |
+
document.body.appendChild(a);
|
| 515 |
+
a.click();
|
| 516 |
+
document.body.removeChild(a);
|
| 517 |
+
URL.revokeObjectURL(url);
|
| 518 |
+
button.innerHTML = 'Export to GDC';
|
| 519 |
+
button.disabled = false;
|
| 520 |
+
}})
|
| 521 |
+
.catch(error => {{
|
| 522 |
+
alert("Download failed: " + error.message);
|
| 523 |
+
}});
|
| 524 |
+
}}
|
| 525 |
+
"""
|
| 526 |
+
|
| 527 |
+
with gr.Blocks(css_paths="style.css") as demo:
|
| 528 |
+
gr.Markdown("# GDC Cohort Copilot")
|
| 529 |
+
|
| 530 |
+
with gr.Row(equal_height=True):
|
| 531 |
+
with gr.Column(scale=7):
|
| 532 |
+
text_input = gr.Textbox(
|
| 533 |
+
label="Describe the cohort you're looking for:",
|
| 534 |
+
info=(
|
| 535 |
+
"Only provide the cohort characteristics. "
|
| 536 |
+
"Do not include extraneous text. "
|
| 537 |
+
"For example, write 'patients with X' "
|
| 538 |
+
"instead of 'I would like patients with X':"
|
| 539 |
+
),
|
| 540 |
+
submit_btn="Generate Cohort",
|
| 541 |
+
elem_id="description-input",
|
| 542 |
+
placeholder="Enter a cohort description to begin...",
|
| 543 |
+
)
|
| 544 |
+
with gr.Column(scale=1, min_width=150):
|
| 545 |
+
case_counter = gr.Text(
|
| 546 |
+
show_label=False,
|
| 547 |
+
interactive=False,
|
| 548 |
+
container=False,
|
| 549 |
+
elem_id="case-counter",
|
| 550 |
+
min_width=150,
|
| 551 |
+
)
|
| 552 |
+
case_download = gr.Button(
|
| 553 |
+
value="Export to GDC",
|
| 554 |
+
min_width=150,
|
| 555 |
+
elem_id="download-btn",
|
| 556 |
+
)
|
| 557 |
+
|
| 558 |
+
with gr.Row(equal_height=True):
|
| 559 |
+
with gr.Column(scale=1, min_width=250):
|
| 560 |
+
gr.Examples(
|
| 561 |
+
examples=EXAMPLE_INPUTS,
|
| 562 |
+
inputs=text_input,
|
| 563 |
+
)
|
| 564 |
+
with gr.Column(scale=4):
|
| 565 |
+
json_output = gr.Code(
|
| 566 |
+
label="Cohort Filter JSON",
|
| 567 |
+
value=json.dumps({"op": "and", "content": []}, indent=4),
|
| 568 |
+
language="json",
|
| 569 |
+
interactive=False,
|
| 570 |
+
show_label=True,
|
| 571 |
+
container=True,
|
| 572 |
+
elem_id="json-output",
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
with gr.Row(equal_height=True):
|
| 576 |
+
with gr.Column(scale=1, min_width=250):
|
| 577 |
+
gr.Markdown("## Currently Selected Filters")
|
| 578 |
+
with gr.Column(scale=4):
|
| 579 |
+
active_selections = gr.CheckboxGroup(
|
| 580 |
+
choices=[],
|
| 581 |
+
show_label=False,
|
| 582 |
+
interactive=True,
|
| 583 |
+
elem_id="active-selections",
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
with gr.Row():
|
| 587 |
+
gr.Markdown(
|
| 588 |
+
"The generated cohort filter will autopopulate into the filter cards below. "
|
| 589 |
+
"**GDC Cohort Copilot can make mistakes!** "
|
| 590 |
+
"Refine your search using the interactive checkboxes. "
|
| 591 |
+
"Note that many other options can be found by selecting the different tabs on the left."
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
with gr.Row():
|
| 595 |
+
# Tab selectors
|
| 596 |
+
tab_buttons = []
|
| 597 |
+
with gr.Column(scale=1, min_width=250):
|
| 598 |
+
for name in TAB_NAMES:
|
| 599 |
+
tab_button = gr.Button(
|
| 600 |
+
value=name,
|
| 601 |
+
variant="primary" if name == TAB_NAMES[0] else "secondary",
|
| 602 |
+
)
|
| 603 |
+
tab_buttons.append(tab_button)
|
| 604 |
+
|
| 605 |
+
# Filter cards
|
| 606 |
+
tab_containers = []
|
| 607 |
+
filter_cards = []
|
| 608 |
+
for tab in CONFIG["tabs"]:
|
| 609 |
+
visible = tab["name"] == TAB_NAMES[0] # default first card
|
| 610 |
+
with gr.Column(scale=4, visible=visible) as tab_container:
|
| 611 |
+
tab_containers.append(tab_container)
|
| 612 |
+
with gr.Row(elem_classes=["card-group"]):
|
| 613 |
+
for card in tab["cards"]:
|
| 614 |
+
if isinstance(card["values"], list):
|
| 615 |
+
filter_card = gr.CheckboxGroup(
|
| 616 |
+
choices=[],
|
| 617 |
+
label=card["name"],
|
| 618 |
+
interactive=True,
|
| 619 |
+
elem_classes=["filter-card"],
|
| 620 |
+
)
|
| 621 |
+
else:
|
| 622 |
+
# values is a dictionary and defines some meta options
|
| 623 |
+
metaopts = card["values"]
|
| 624 |
+
assert (
|
| 625 |
+
"type" in metaopts
|
| 626 |
+
and metaopts["type"] == "range"
|
| 627 |
+
and all(
|
| 628 |
+
k in metaopts
|
| 629 |
+
for k in [
|
| 630 |
+
"min",
|
| 631 |
+
"max",
|
| 632 |
+
]
|
| 633 |
+
)
|
| 634 |
+
), f"Unknown meta options for {card['name']}"
|
| 635 |
+
info = "Inclusive range"
|
| 636 |
+
if "unit" in metaopts:
|
| 637 |
+
info += f", units in {metaopts['unit']}"
|
| 638 |
+
filter_card = RangeSlider(
|
| 639 |
+
label=card["name"],
|
| 640 |
+
info=info,
|
| 641 |
+
minimum=metaopts["min"],
|
| 642 |
+
maximum=metaopts["max"],
|
| 643 |
+
step=1, # assume integer
|
| 644 |
+
elem_classes=["filter-card", "filter-range"],
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
filter_cards.append(filter_card)
|
| 648 |
+
|
| 649 |
+
# Assign tab buttons to toggle visibility
|
| 650 |
+
for tab_button, name in zip(tab_buttons, TAB_NAMES):
|
| 651 |
+
tab_button.click(
|
| 652 |
+
fn=set_active_tab,
|
| 653 |
+
inputs=gr.State(name),
|
| 654 |
+
outputs=tab_containers + tab_buttons,
|
| 655 |
+
api_name=False,
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
# Enable case download
|
| 659 |
+
case_download.click(
|
| 660 |
+
fn=None, # apparently this isn't the same as not specifying it
|
| 661 |
+
js=DOWNLOAD_CASES_JS,
|
| 662 |
+
inputs=json_output,
|
| 663 |
+
api_name=False,
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
# Load initial counts on startup
|
| 667 |
+
demo.load(
|
| 668 |
+
fn=update_cards_with_counts,
|
| 669 |
+
inputs=[gr.State("")] + filter_cards,
|
| 670 |
+
outputs=filter_cards + [case_counter],
|
| 671 |
+
api_name=False,
|
| 672 |
+
)
|
| 673 |
+
|
| 674 |
+
# Update checkboxes on filter generation
|
| 675 |
+
# Also update JSON based on checkboxes
|
| 676 |
+
# - relying on checkbox update to do this fires multiple times
|
| 677 |
+
# - also propagates new model selections after json is updated
|
| 678 |
+
# Also this way it shows the model generated JSON
|
| 679 |
+
text_input.submit(
|
| 680 |
+
fn=process_query,
|
| 681 |
+
inputs=text_input,
|
| 682 |
+
outputs=filter_cards + [json_output],
|
| 683 |
+
api_name=False,
|
| 684 |
+
).success(
|
| 685 |
+
fn=update_active_selections,
|
| 686 |
+
inputs=filter_cards,
|
| 687 |
+
outputs=[active_selections],
|
| 688 |
+
api_name=False,
|
| 689 |
+
)
|
| 690 |
+
|
| 691 |
+
# Update JSON based on cards
|
| 692 |
+
# Keep user `input` event listener (vs `change`) otherwise will fire multiple times
|
| 693 |
+
# Seems like otherwise it should be cyclical, Gradio must have some logic to prevent infinite loops
|
| 694 |
+
for filter_card in filter_cards:
|
| 695 |
+
if isinstance(filter_card, RangeSlider):
|
| 696 |
+
filter_card.release(
|
| 697 |
+
fn=update_json_from_cards,
|
| 698 |
+
inputs=filter_cards,
|
| 699 |
+
outputs=json_output,
|
| 700 |
+
api_name=False,
|
| 701 |
+
).success(
|
| 702 |
+
fn=update_active_selections,
|
| 703 |
+
inputs=filter_cards,
|
| 704 |
+
outputs=[active_selections],
|
| 705 |
+
api_name=False,
|
| 706 |
+
)
|
| 707 |
+
else:
|
| 708 |
+
filter_card.input(
|
| 709 |
+
fn=update_json_from_cards,
|
| 710 |
+
inputs=filter_cards,
|
| 711 |
+
outputs=json_output,
|
| 712 |
+
api_name=False,
|
| 713 |
+
).success(
|
| 714 |
+
fn=update_active_selections,
|
| 715 |
+
inputs=filter_cards,
|
| 716 |
+
outputs=[active_selections],
|
| 717 |
+
api_name=False,
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
# Enable functionality of the active filter selectors
|
| 721 |
+
active_selections.input(
|
| 722 |
+
fn=update_cards_from_active,
|
| 723 |
+
inputs=[active_selections] + filter_cards,
|
| 724 |
+
outputs=[active_selections] + filter_cards,
|
| 725 |
+
api_name=False,
|
| 726 |
+
).success(
|
| 727 |
+
fn=update_json_from_cards,
|
| 728 |
+
inputs=filter_cards,
|
| 729 |
+
outputs=json_output,
|
| 730 |
+
api_name=False,
|
| 731 |
+
)
|
| 732 |
+
|
| 733 |
+
# Update checkboxes after executing filter query
|
| 734 |
+
json_output.change(
|
| 735 |
+
fn=update_cards_with_counts,
|
| 736 |
+
inputs=[json_output] + filter_cards,
|
| 737 |
+
outputs=filter_cards + [case_counter],
|
| 738 |
+
api_name=False,
|
| 739 |
+
)
|
| 740 |
+
|
| 741 |
+
# gr.api(generate_filter, api_name="generate_filter")
|
| 742 |
+
|
| 743 |
+
if __name__ == "__main__":
|
| 744 |
+
demo.launch(ssr_mode=False)
|
requirements.txt
CHANGED
|
@@ -2,7 +2,7 @@ torch==2.5.1
|
|
| 2 |
transformers==4.50.0
|
| 3 |
gradio==5.49.1
|
| 4 |
mcp==1.10.1
|
| 5 |
-
guidance==0.
|
| 6 |
gradio_rangeslider
|
| 7 |
spaces
|
| 8 |
fastapi==0.116.1
|
|
|
|
| 2 |
transformers==4.50.0
|
| 3 |
gradio==5.49.1
|
| 4 |
mcp==1.10.1
|
| 5 |
+
guidance==0.3.0
|
| 6 |
gradio_rangeslider
|
| 7 |
spaces
|
| 8 |
fastapi==0.116.1
|