Spaces:
Running
Running
File size: 30,591 Bytes
28d939c 6cc746a 28d939c 6cc746a c89d1c8 6cc746a c89d1c8 6cc746a c89d1c8 6cc746a c89d1c8 6cc746a c89d1c8 6cc746a c89d1c8 6cc746a 28d939c b4a6522 28d939c 4e5b950 28d939c 4e5b950 28d939c 4e5b950 28d939c 4e5b950 28d939c b1c7049 4e5b950 90f8865 b1c7049 28d939c bdfff19 b1c7049 28d939c b1c7049 28d939c b1c7049 28d939c b1c7049 28d939c bdfff19 28d939c ed26eb0 28d939c bdfff19 28d939c 4e5b950 28d939c 4e5b950 28d939c ed26eb0 28d939c ed26eb0 28d939c bdfff19 28d939c ed26eb0 28d939c bdfff19 28d939c b1c7049 28d939c 4e5b950 ed26eb0 28d939c bdfff19 28d939c 59cbe26 28d939c ed26eb0 28d939c 4e5b950 bdfff19 3e87cf7 4e5b950 b1c7049 3e87cf7 28d939c b1c7049 28d939c ed26eb0 28d939c ed26eb0 28d939c ed26eb0 28d939c b1c7049 28d939c 3e87cf7 6cc746a 3e87cf7 6cc746a 3e87cf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
import os
import cv2
import tempfile
import spaces
import gradio as gr
import numpy as np
import torch
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
from PIL import Image, ImageDraw
import inspect
from transformers import (
Sam3Model, Sam3Processor,
Sam3TrackerModel, Sam3TrackerProcessor
)
# ============ GRADIO CLIENT COMPAT PATCH ============
# Some gradio_client versions crash when encountering boolean JSON Schema nodes
# (e.g., additionalProperties: false/true) while generating /info API schema.
# Patch defensively to prevent startup failures on HF Spaces.
try:
import gradio_client.utils as _grc_utils
if not getattr(_grc_utils, "_BOOL_SCHEMA_PATCHED", False):
# 1) get_type() sometimes assumes schema is a dict
_orig_get_type = getattr(_grc_utils, "get_type", None)
def _safe_get_type(schema): # noqa: ANN001
if isinstance(schema, bool) or not isinstance(schema, dict):
return "any"
if _orig_get_type is None:
return "any"
return _orig_get_type(schema)
if _orig_get_type is not None:
_grc_utils.get_type = _safe_get_type
# 2) _json_schema_to_python_type() may raise on schema == True/False
_orig_js2pt = getattr(_grc_utils, "_json_schema_to_python_type", None)
def _safe_json_schema_to_python_type(schema, defs=None): # noqa: ANN001
if isinstance(schema, bool):
# boolean JSON Schema: True means "any", False means "no value".
# For API-info rendering, treating both as Any avoids crashes.
return "Any"
if _orig_js2pt is None:
return "Any"
return _orig_js2pt(schema, defs)
if _orig_js2pt is not None:
_grc_utils._json_schema_to_python_type = _safe_json_schema_to_python_type
_grc_utils._BOOL_SCHEMA_PATCHED = True
except Exception as _e:
# If gradio_client is unavailable or API changes, ignore and proceed.
print(f"[warn] gradio_client schema patch skipped: {_e}")
# ============ GRADIO LAUNCH COMPAT ============
def _launch_compat(demo, **kwargs):
"""
Gradio ๋ฒ์ ๋ณ๋ก Blocks.launch() ์๊ทธ๋์ฒ๊ฐ ๋ฌ๋ผ์(์: ssr ์ง์ ์ฌ๋ถ),
ํ์ฌ ์ค์น๋ Gradio๊ฐ ์ง์ํ๋ ํค๋ง ๊ณจ๋ผ launch()๋ฅผ ํธ์ถํ๋ค.
"""
# ๋จผ์ ์ํ๋ ์ต์
์ผ๋ก ๊ทธ๋๋ก ํธ์ถํ๊ณ , "unexpected keyword"๊ฐ ๋๋ฉด ํด๋น ํค๋ง ์ ๊ฑฐ ํ ์ฌ์๋
try:
return demo.launch(**kwargs)
except TypeError as e:
msg = str(e)
if "unexpected keyword argument 'ssr'" in msg or 'unexpected keyword argument "ssr"' in msg:
kwargs.pop("ssr", None)
return demo.launch(**kwargs)
# ๊ทธ ์ธ ์ผ์ด์ค๋ ์๊ทธ๋์ฒ ๊ธฐ๋ฐ์ผ๋ก ํ ๋ฒ ๋ ๋ณด์์ ์ผ๋ก ํํฐ๋ง
try:
sig = inspect.signature(demo.launch)
supported = set(sig.parameters.keys())
filtered = {k: v for k, v in kwargs.items() if k in supported}
return demo.launch(**filtered)
except Exception:
raise
# ============ THEME SETUP ============
# Theme disabled to avoid API schema issues on HF Spaces
# ============ GLOBAL SETUP ============
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"๐ฅ๏ธ Using compute device: {device}")
# Models will be loaded lazily in functions to avoid build timeouts
IMG_MODEL = None
IMG_PROCESSOR = None
TRK_MODEL = None
TRK_PROCESSOR = None
@spaces.GPU
def load_models():
"""Lazy load models when needed"""
global IMG_MODEL, IMG_PROCESSOR, TRK_MODEL, TRK_PROCESSOR
if IMG_MODEL is not None:
return True
print("โณ Loading SAM3 Models...")
try:
# GPU๊ฐ ์ฌ์ฉ ๊ฐ๋ฅํ๋ฉด GPU๋ก ๋ก๋
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
IMG_MODEL = Sam3Model.from_pretrained("DiffusionWave/sam3", device_map=device, torch_dtype=dtype)
IMG_PROCESSOR = Sam3Processor.from_pretrained("DiffusionWave/sam3")
TRK_MODEL = Sam3TrackerModel.from_pretrained("DiffusionWave/sam3", device_map=device, torch_dtype=dtype)
TRK_PROCESSOR = Sam3TrackerProcessor.from_pretrained("DiffusionWave/sam3")
print(f"โ
All Models loaded successfully on {device}!")
return True
except Exception as e:
print(f"โ Model loading failed: {e}")
return False
# ============ LAYER MANAGEMENT ============
class LayerManager:
"""๋ ์ด์ด ๊ธฐ๋ฐ ์ธ๊ทธ๋ฉํ
์ด์
๊ด๋ฆฌ ํด๋์ค"""
def __init__(self):
self.layers = {} # layer_id -> {'name': str, 'color': tuple, 'points': list, 'point_labels': list, 'masks': list, 'area': float}
self.current_layer_id = None
self.layer_counter = 0
def create_layer(self, name, color=None):
"""์ ๋ ์ด์ด ์์ฑ"""
if color is None:
# ๋ฌด์์ ์์ ์์ฑ
import random
color = (random.randint(50, 200), random.randint(50, 200), random.randint(50, 200))
layer_id = f"layer_{self.layer_counter}"
self.layers[layer_id] = {
'name': name,
'color': color,
'points': [],
'point_labels': [], # 1: positive, 0: negative
'masks': [],
'area': 0.0
}
self.layer_counter += 1
return layer_id
def add_point_to_layer(self, layer_id, point, label=1):
"""๋ ์ด์ด์ ํฌ์ธํธ ์ถ๊ฐ"""
if layer_id in self.layers:
self.layers[layer_id]['points'].append(point)
self.layers[layer_id]['point_labels'].append(label)
print(f"[add_point_to_layer] Added point to '{self.layers[layer_id]['name']}': {point}, label={label}")
print(f"[add_point_to_layer] Total points in '{self.layers[layer_id]['name']}': {len(self.layers[layer_id]['points'])}")
def add_mask_to_layer(self, layer_id, mask):
"""๋ ์ด์ด์ ๋ง์คํฌ ์ถ๊ฐ"""
if layer_id in self.layers:
# ๊ธฐ์กด ๋ง์คํฌ๋ฅผ ๊ต์ฒด (๊ฐ์ ๋ ์ด์ด์ ์ฌ์ธ๊ทธ๋ฉํ
์ด์
์)
self.layers[layer_id]['masks'] = [mask]
# ๋ฉด์ ๊ณ์ฐ - mask๋ฅผ numpy array๋ก ๋ณํ
if isinstance(mask, torch.Tensor):
mask_np = mask.cpu().numpy()
else:
mask_np = mask
# ๋ฉด์ ๊ณ์ฐ
area = np.sum(mask_np > 0)
self.layers[layer_id]['area'] = area
# ๋๋ฒ๊น
: ๋ง์คํฌ ์ ๋ณด ์ถ๋ ฅ
print(f"[add_mask_to_layer] Layer: {self.layers[layer_id]['name']}, Mask shape: {mask_np.shape}, Area: {area}")
def get_current_layer(self):
"""ํ์ฌ ์ ํ๋ ๋ ์ด์ด ๋ฐํ"""
if self.current_layer_id and self.current_layer_id in self.layers:
return self.layers[self.current_layer_id]
return None
def set_current_layer(self, layer_id):
"""ํ์ฌ ๋ ์ด์ด ์ค์ """
self.current_layer_id = layer_id
def clear_current_layer(self):
"""ํ์ฌ ๋ ์ด์ด ์ด๊ธฐํ"""
if self.current_layer_id and self.current_layer_id in self.layers:
self.layers[self.current_layer_id]['points'] = []
self.layers[self.current_layer_id]['point_labels'] = []
self.layers[self.current_layer_id]['masks'] = []
self.layers[self.current_layer_id]['area'] = 0.0
def calculate_total_area_ratio(layer_manager, total_pixels):
"""์ ์ฒด ์ด๋ฏธ์ง ๋๋น ๊ฐ ๋ ์ด์ด์ ๋ฉด์ ๋น์จ ๊ณ์ฐ"""
ratios = []
for layer_id, layer in layer_manager.layers.items():
area = layer['area']
ratio = (area / total_pixels) * 100 if total_pixels > 0 and area > 0 else 0
has_mask = len(layer['masks']) > 0
# ๋๋ฒ๊น
: ๋ ์ด์ด ์ ๋ณด ์ถ๋ ฅ
print(f"[calculate_total_area_ratio] Layer: {layer['name']}, Area: {area}, Ratio: {ratio}%, Masks: {len(layer['masks'])}, Has mask: {has_mask}")
ratios.append({
'layer_name': layer['name'],
'area_pixels': int(area),
'ratio_percent': round(ratio, 2)
})
return ratios
def create_area_chart_data(ratios):
"""๋ฉด์ ๋ฐ์ดํฐ๋ฅผ ํ
์ด๋ธ ํฌ๋งท์ผ๋ก ๋ณํ"""
if not ratios:
return pd.DataFrame(columns=["Layer", "Area (pixels)", "Ratio(%)"])
data = []
for ratio in ratios:
data.append({
"Layer": ratio['layer_name'],
"Area (pixels)": f"{ratio['area_pixels']:,}",
"Ratio(%)": f"{ratio['ratio_percent']}%"
})
return pd.DataFrame(data)
# ============ UTILITY FUNCTIONS ============
def compose_all_layers(base_image, layer_manager, opacity=0.5, border_width=2):
"""๋ชจ๋ ๋ ์ด์ด๋ฅผ ํฉ์ฑํ์ฌ ์ต์ข
์ด๋ฏธ์ง ์์ฑ"""
if isinstance(base_image, np.ndarray):
base_image = Image.fromarray(base_image)
base_image = base_image.convert("RGBA")
if not layer_manager.layers:
return base_image.convert("RGB")
composite_layer = Image.new("RGBA", base_image.size, (0, 0, 0, 0))
for layer_id, layer in layer_manager.layers.items():
if not layer['masks']:
continue
layer_color = layer['color']
for mask in layer['masks']:
if isinstance(mask, torch.Tensor):
mask = mask.cpu().numpy()
mask = mask.astype(np.uint8)
if mask.ndim == 3: mask = mask[0]
if mask.ndim == 2 and mask.shape[0] == 1: mask = mask[0]
# ๋ง์คํฌ๋ฅผ PIL ์ด๋ฏธ์ง๋ก ๋ณํ
mask_img = Image.fromarray((mask * 255).astype(np.uint8))
# ์์ ๋ ์ด์ด ์์ฑ
color_layer = Image.new("RGBA", base_image.size, layer_color + (0,))
mask_alpha = mask_img.point(lambda v: int(v * opacity * 255) if v > 0 else 0)
color_layer.putalpha(mask_alpha)
# ํ
๋๋ฆฌ ์ถ๊ฐ
if border_width > 0:
try:
# ๋ง์คํฌ์ ํ
๋๋ฆฌ ์ฐพ๊ธฐ
mask_np = np.array(mask_img)
kernel_size = border_width * 2 + 1
dilated = cv2.dilate(mask_np, np.ones((kernel_size, kernel_size), np.uint8))
border = dilated - mask_np
border_img = Image.fromarray(border)
border_layer = Image.new("RGBA", base_image.size, (255, 255, 255, 255)) # ํฐ์ ํ
๋๋ฆฌ
border_alpha = border_img.point(lambda v: 255 if v > 0 else 0)
border_layer.putalpha(border_alpha)
# ํ
๋๋ฆฌ๋ฅผ ๋จผ์ ํฉ์ฑ
composite_layer = Image.alpha_composite(composite_layer, border_layer)
except Exception as e:
print(f"Border creation error: {e}")
# ๋ง์คํฌ ๋ ์ด์ด ํฉ์ฑ
composite_layer = Image.alpha_composite(composite_layer, color_layer)
# ์ต์ข
ํฉ์ฑ
final_result = Image.alpha_composite(base_image, composite_layer)
return final_result.convert("RGB")
def draw_points_on_image(image, layer_manager):
"""์ด๋ฏธ์ง์ ๋ชจ๋ ๋ ์ด์ด์ ํฌ์ธํธ๋ค์ ํ์"""
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
draw_img = image.copy()
draw = ImageDraw.Draw(draw_img)
for layer_id, layer in layer_manager.layers.items():
is_current = (layer_id == layer_manager.current_layer_id)
for i, point in enumerate(layer['points']):
x, y = point
label = layer['point_labels'][i]
# ํฌ์งํฐ๋ธ: ๋นจ๊ฐ์ ์, ๋ค๊ฑฐํฐ๋ธ: ํ๋์ Xํ์
if label == 1: # Positive
# ํฐ ๋นจ๊ฐ์ ์
r = 15 if is_current else 10
draw.ellipse((x-r, y-r, x+r, y+r), fill="red", outline="white", width=3)
# ์์ ํฐ์ ์ (์ค์)
draw.ellipse((x-3, y-3, x+3, y+3), fill="white")
else: # Negative (0)
# ํฐ ํ๋์ ์
r = 15 if is_current else 10
draw.ellipse((x-r, y-r, x+r, y+r), fill="blue", outline="white", width=3)
# X ํ์
line_length = 8
draw.line([(x-line_length, y-line_length), (x+line_length, y+line_length)], fill="white", width=3)
draw.line([(x-line_length, y+line_length), (x+line_length, y-line_length)], fill="white", width=3)
return draw_img
# ============ UI FUNCTIONS ============
def update_layer_selector_choices(manager):
"""๋ ์ด์ด ์ ํ ๋ผ๋์ค ๋ฒํผ์ choices ์
๋ฐ์ดํธ"""
choices = [layer['name'] for layer in manager.layers.values()]
current_value = None
if manager.current_layer_id and manager.current_layer_id in manager.layers:
current_value = manager.layers[manager.current_layer_id]['name']
# ์ปดํฌ๋ํธ๋ฅผ ์๋ก ์์ฑํด์ ๋ฐํํ์ง ๋ง๊ณ , gr.update()๋ก ๊ธฐ์กด ์ปดํฌ๋ํธ๋ฅผ ์
๋ฐ์ดํธํด์ผ ํจ
return gr.update(choices=choices, value=current_value, interactive=True)
def create_new_layer(name, current_manager):
"""์ ๋ ์ด์ด ์์ฑ"""
if current_manager is None:
current_manager = LayerManager()
if not name.strip():
return current_manager, create_layer_status_html(current_manager), update_layer_selector_choices(current_manager), "Please enter a layer name"
# ์ค๋ณต ์ด๋ฆ ์ฒดํฌ
for layer_id, layer in current_manager.layers.items():
if layer['name'] == name.strip():
return current_manager, create_layer_status_html(current_manager), update_layer_selector_choices(current_manager), f"Layer name '{name}' already exists"
layer_id = current_manager.create_layer(name.strip())
current_manager.set_current_layer(layer_id)
return current_manager, create_layer_status_html(current_manager), update_layer_selector_choices(current_manager), f"Layer '{name}' created"
def create_layer_status_html(current_manager):
"""๋ ์ด์ด ์ํ ํ์ HTML ์์ฑ (์๊ฐ์ ํ์๋ง)"""
if not current_manager.layers:
return "<div style='padding: 10px; text-align: center; color: #888;'>No layers created</div>"
html = "<div style='display: flex; flex-wrap: wrap; gap: 8px; padding: 10px;'>"
for layer_id, layer in current_manager.layers.items():
is_active = (current_manager.current_layer_id == layer_id)
# ์์ ์ถ์ถ
r, g, b = layer['color']
color_hex = f"#{r:02x}{g:02x}{b:02x}"
# ํ์ฑํ ์ํ์ ๋ฐ๋ฅธ ์คํ์ผ
if is_active:
style = f"""
background: linear-gradient(135deg, {color_hex}, {color_hex}dd);
color: white;
border: 3px solid #4682B4;
box-shadow: 0 4px 12px rgba(70, 130, 180, 0.4);
"""
else:
style = f"""
background: linear-gradient(135deg, {color_hex}aa, {color_hex}77);
color: white;
border: 2px solid {color_hex};
opacity: 0.7;
"""
# ํฌ์ธํธ ๊ฐ์ ๊ณ์ฐ (ํฌ์งํฐ๋ธ/๋ค๊ฑฐํฐ๋ธ ๊ตฌ๋ถ)
positive_points = sum(1 for label in layer['point_labels'] if label == 1)
negative_points = sum(1 for label in layer['point_labels'] if label == 0)
masks_count = len(layer['masks'])
has_mask = masks_count > 0
# ์ํ ์์ด์ฝ
status_icon = "[OK]" if has_mask else "[ ]"
html += f"""
<div style="{style}
padding: 12px 20px;
border-radius: 8px;
font-weight: 600;
font-size: 14px;
min-width: 150px;">
{status_icon} {layer['name']}<br>
<small style='font-size: 11px; opacity: 0.9;'>
<span style='color: #ffcccc;'>+{positive_points}</span>
<span style='color: #ccccff;'>-{negative_points}</span>
{masks_count}mask
</small>
</div>
"""
html += "</div>"
return html
def click_on_image(current_manager, image, point_mode, evt: gr.SelectData):
"""์ด๋ฏธ์ง ํด๋ฆญ ์ฒ๋ฆฌ - Include/Exclude ๋ชจ๋์ ๋ฐ๋ผ ํฌ์ธํธ ์ถ๊ฐ"""
if current_manager is None:
current_manager = LayerManager()
if image is None or current_manager.current_layer_id is None:
return image, current_manager, create_layer_status_html(current_manager), "Please select image and layer"
x, y = evt.index
# ํฌ์ธํธ ๋ชจ๋์ ๋ฐ๋ผ ๋ ์ด๋ธ ๊ฒฐ์ (positive=1, negative=0)
label = 1 if point_mode == "positive" else 0
layer_name = current_manager.layers[current_manager.current_layer_id]['name']
print(f"\n[click_on_image] ================")
print(f"[click_on_image] Layer: {layer_name}")
print(f"[click_on_image] Point mode: {point_mode}, Label: {label}, Position: ({x}, {y})")
current_manager.add_point_to_layer(current_manager.current_layer_id, [x, y], label)
# ํฌ์ธํธ ํ์๋ ์ด๋ฏธ์ง ์์ฑ (์๋ณธ ์ด๋ฏธ์ง์ ํฌ์ธํธ ํ์)
result_image = draw_points_on_image(image, current_manager)
mode_text = "Include" if label == 1 else "Exclude"
return result_image, current_manager, create_layer_status_html(current_manager), f"{mode_text} point added to '{layer_name}' at ({x}, {y})"
def segment_all_layers(current_manager, image):
"""๋ชจ๋ ๋ ์ด์ด๋ฅผ ์์๋๋ก ์ธ๊ทธ๋ฉํ
์ด์
์คํ"""
if current_manager is None:
current_manager = LayerManager()
if image is None:
return None, current_manager, create_layer_status_html(current_manager), "Please upload an image", pd.DataFrame()
if not current_manager.layers:
return None, current_manager, create_layer_status_html(current_manager), "Please create layers first", pd.DataFrame()
try:
print(f"\n[segment_all_layers] Starting segmentation for all layers...")
segmented_count = 0
skipped_count = 0
# ๋ชจ๋ ๋ ์ด์ด๋ฅผ ์ํํ๋ฉฐ ์ธ๊ทธ๋ฉํ
์ด์
for layer_id, layer in current_manager.layers.items():
layer_name = layer['name']
# ํฌ์ธํธ๊ฐ ์๋ ๋ ์ด์ด๋ ๊ฑด๋๋ฐ๊ธฐ
if not layer['points']:
print(f"[segment_all_layers] Skipping '{layer_name}' - no points")
skipped_count += 1
continue
print(f"\n[segment_all_layers] Processing layer: {layer_name}")
print(f"[segment_all_layers] Points: {len(layer['points'])}, Labels: {layer['point_labels']}")
# Load models if needed
if not load_models():
print(f"[segment_all_layers] Failed to load models for layer: {layer_name}")
continue
# SAM3 Tracker๋ก ์ธ๊ทธ๋ฉํ
์ด์
points_list = layer['points']
labels_list = layer['point_labels']
input_points = [[points_list]]
input_labels = [[labels_list]]
# Use the same device as the model
model_device = next(TRK_MODEL.parameters()).device
inputs = TRK_PROCESSOR(images=image, input_points=input_points, input_labels=input_labels, return_tensors="pt").to(model_device)
with torch.no_grad():
outputs = TRK_MODEL(**inputs, multimask_output=False)
masks = TRK_PROCESSOR.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"], binarize=True)[0]
# ๋ ์ด์ด์ ๋ง์คํฌ ์ถ๊ฐ
current_manager.add_mask_to_layer(layer_id, masks[0])
segmented_count += 1
print(f"[segment_all_layers] Completed '{layer_name}'")
# ๊ฒฐ๊ณผ ์ด๋ฏธ์ง ์์ฑ (ํฌ์ธํธ ํฌํจ)
result_image = compose_all_layers(image, current_manager, 0.5, 2) # ๊ธฐ๋ณธ๊ฐ ์ฌ์ฉ
result_image = draw_points_on_image(result_image, current_manager)
# ๋ฉด์ ๋ถ์
total_pixels = image.size[0] * image.size[1]
ratios = calculate_total_area_ratio(current_manager, total_pixels)
chart_data = create_area_chart_data(ratios)
status_msg = f"Segmentation completed! Processed: {segmented_count} layers, Skipped: {skipped_count} layers"
print(f"\n[segment_all_layers] {status_msg}")
return result_image, current_manager, create_layer_status_html(current_manager), status_msg, chart_data
except Exception as e:
import traceback
print(f"[segment_all_layers] Error: {str(e)}")
traceback.print_exc()
return None, current_manager, create_layer_status_html(current_manager), f"Error: {str(e)}", pd.DataFrame()
def clear_current_layer(current_manager, image):
"""ํ์ฌ ๋ ์ด์ด ์ด๊ธฐํ"""
if current_manager is None:
current_manager = LayerManager()
if current_manager.current_layer_id:
current_manager.clear_current_layer()
if image:
result_image = compose_all_layers(image, current_manager, 0.5, 2) # ๊ธฐ๋ณธ๊ฐ ์ฌ์ฉ
result_image = draw_points_on_image(result_image, current_manager)
else:
result_image = None
total_pixels = image.size[0] * image.size[1] if image else 0
ratios = calculate_total_area_ratio(current_manager, total_pixels)
chart_data = create_area_chart_data(ratios)
return result_image, current_manager, create_layer_status_html(current_manager), "Layer cleared", chart_data
return None, current_manager, create_layer_status_html(current_manager), "Please select a layer", pd.DataFrame()
def refresh_visualization(current_manager, image, opacity, border_width):
"""์๊ฐํ ์๋ก๊ณ ์นจ"""
if current_manager is None:
current_manager = LayerManager()
if image is None:
return None, "Please upload an image", pd.DataFrame()
result_image = compose_all_layers(image, current_manager, opacity, border_width)
result_image = draw_points_on_image(result_image, current_manager)
total_pixels = image.size[0] * image.size[1]
ratios = calculate_total_area_ratio(current_manager, total_pixels)
chart_data = create_area_chart_data(ratios)
return result_image, "Visualization updated", chart_data
# ============ GRADIO INTERFACE ============
# No custom JavaScript needed anymore
custom_js = ""
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# **SAM3 Layer Segmentation Tool**", elem_id="main-title")
gr.Markdown("**Layer-based object separation and area analysis tool** | 1. Create layers 2. Select point mode and click 3. Run segmentation (processes all layers)")
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image(type="pil", label="Upload Image", interactive=True, height=400)
# ๋ ์ด์ด ์์ฑ
with gr.Row():
layer_name_input = gr.Textbox(label="Layer Name", placeholder="e.g. bench, tree, person")
create_layer_btn = gr.Button("Create", variant="primary")
# ๋ ์ด์ด ์ํ ํ์
gr.Markdown("### Layers Status")
layer_buttons_html = gr.HTML("<div style='padding: 10px; text-align: center; color: #888;'>No layers created</div>")
# ๋ ์ด์ด ์ ํ (๋ผ๋์ค ๋ฒํผ์ผ๋ก ๋ณ๊ฒฝ)
layer_selector = gr.Radio(label="Select Layer to Add Points", choices=[], interactive=True, value=None)
# ํฌ์ธํธ ๋ชจ๋ ์ ํ
gr.Markdown("### Point Mode")
with gr.Row():
include_btn = gr.Button("Include Point", variant="primary", size="sm")
exclude_btn = gr.Button("Exclude Point", variant="secondary", size="sm")
point_mode_text = gr.Textbox(label="Current Mode", value="Include Point (Red)", interactive=False)
# ํฌ์ธํธ ์๋ด
gr.Markdown("""
**Instructions:**
- Select a layer from dropdown
- Choose point mode (Include/Exclude)
- Click on image to add point
- **Red circle (โ)**: Include this area
- **Blue circle with X**: Exclude this area
""")
# ์ปจํธ๋กค
with gr.Row():
segment_btn = gr.Button("Run All Segmentation", variant="primary", size="lg")
clear_btn = gr.Button("Clear Current Layer", variant="secondary")
# ์ํ
status_text = gr.Textbox(label="Status", interactive=False)
st_layer_manager = gr.State(None) # LayerManager๋ ํจ์ ๋ด์์ ์์ฑ
point_mode_state = gr.State("positive") # "positive" or "negative"
with gr.Column(scale=2):
img_output = gr.Image(type="pil", label="Segmentation Result", height=400, interactive=False)
# ๋ฉด์ ํ
์ด๋ธ
area_table = gr.Dataframe(
label="Area Ratio by Layer"
)
# ์ค์ - ์์ ํ ์ ๊ฑฐ (API ์คํค๋ง ์ถฉ๋ ๋ฐฉ์ง)
# Visualization settings removed temporarily
# ์ด๋ฒคํธ ์ฐ๊ฒฐ
create_layer_btn.click(
create_new_layer,
inputs=[layer_name_input, st_layer_manager],
outputs=[st_layer_manager, layer_buttons_html, layer_selector, status_text]
)
# ๋ ์ด์ด ์ ํ
def on_layer_select(selected_name, mgr):
if mgr is None:
mgr = LayerManager()
if selected_name:
# ์ด๋ฆ์ผ๋ก layer_id ์ฐพ๊ธฐ
layer_id = None
for lid, layer in mgr.layers.items():
if layer['name'] == selected_name:
layer_id = lid
break
if layer_id:
mgr.set_current_layer(layer_id)
return mgr, create_layer_status_html(mgr), f"Layer '{selected_name}' selected"
return mgr, create_layer_status_html(mgr), "Please select a layer"
layer_selector.change(
on_layer_select,
inputs=[layer_selector, st_layer_manager],
outputs=[st_layer_manager, layer_buttons_html, status_text]
)
# ํฌ์ธํธ ๋ชจ๋ ๋ณ๊ฒฝ
def set_include_mode():
return "positive", "Include Point (Red)"
def set_exclude_mode():
return "negative", "Exclude Point (Blue)"
include_btn.click(
set_include_mode,
outputs=[point_mode_state, point_mode_text]
)
exclude_btn.click(
set_exclude_mode,
outputs=[point_mode_state, point_mode_text]
)
# ์ด๋ฏธ์ง ํด๋ฆญ ์ด๋ฒคํธ - img_input๊ณผ img_output ๋ชจ๋์์ ํด๋ฆญ ๋ฐ๊ธฐ
img_input.select(
click_on_image,
inputs=[st_layer_manager, img_input, point_mode_state],
outputs=[img_output, st_layer_manager, layer_buttons_html, status_text]
)
img_output.select(
click_on_image,
inputs=[st_layer_manager, img_input, point_mode_state],
outputs=[img_output, st_layer_manager, layer_buttons_html, status_text]
)
# ๋ชจ๋ ๋ ์ด์ด ์ธ๊ทธ๋ฉํ
์ด์
์คํ
segment_btn.click(
segment_all_layers,
inputs=[st_layer_manager, img_input],
outputs=[img_output, st_layer_manager, layer_buttons_html, status_text, area_table]
)
clear_btn.click(
clear_current_layer,
inputs=[st_layer_manager, img_input],
outputs=[img_output, st_layer_manager, layer_buttons_html, status_text, area_table]
)
# ํฌ๋ช
๋ ๋ฐ ํ
๋๋ฆฌ ์ฌ๋ผ์ด๋ ์ค์๊ฐ ์
๋ฐ์ดํธ - ์ผ์์ ์ผ๋ก ๋นํ์ฑํ
# opacity_slider.change(
# refresh_visualization,
# inputs=[st_layer_manager, img_input, opacity_slider, border_slider],
# outputs=[img_output, status_text, area_table]
# )
# border_slider.change(
# refresh_visualization,
# inputs=[st_layer_manager, img_input, opacity_slider, border_slider],
# outputs=[img_output, status_text, area_table]
# )
# ์ด๋ฏธ์ง ์
๋ก๋ ์ ์ด๊ธฐํ
def on_image_upload(img):
new_manager = LayerManager()
empty_html = "<div style='padding: 10px; text-align: center; color: #888;'>No layers created</div>"
# ์
๋ก๋ํ ์ด๋ฏธ์ง๋ฅผ ์ถ๋ ฅ์๋ ํ์
return new_manager, img, pd.DataFrame(), empty_html, update_layer_selector_choices(new_manager), "positive", "Include Point (Red)", "New image uploaded"
img_input.change(
on_image_upload,
inputs=[img_input],
outputs=[st_layer_manager, img_output, area_table, layer_buttons_html, layer_selector, point_mode_state, point_mode_text, status_text]
)
@spaces.GPU
def run_spaces():
_launch_compat(demo, ssr=False)
def run_local():
_launch_compat(demo, show_error=True, ssr=False)
if __name__ == "__main__":
# Hugging Spaces ํ๊ฒฝ ๊ฐ์ง
import os
if os.getenv("SPACE_ID"):
run_spaces()
else:
run_local()
|