Spaces:
Runtime error
Runtime error
File size: 3,051 Bytes
a2105f9 b7e87cc a2105f9 9ace052 b7e87cc 704270a 54638f8 f2b2c12 a2105f9 b009c70 e7a429e a7c3599 e7a429e 3f1a94d 0392745 ef5bfac e9143ae d7dd4e2 d518652 5588dbb f13b775 5588dbb e9143ae 6e4124d 5588dbb ef5bfac d518652 f13b775 3f1a94d e7a429e 41d29b6 fe644e0 e7a429e fe644e0 e7a429e c746161 40457d3 e7a429e f2b2c12 e7a429e f2b2c12 8f78501 e7a429e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import os, subprocess, sys
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
os.environ["HF_HUB_DISABLE_HF_TRANSFER"] = "1"
os.environ["HF_HUB_ENABLE_XET"] = "0"
os.environ["NUMBA_CACHE_DIR"] = "/tmp/numba_cache"
os.makedirs("/tmp/numba_cache", exist_ok=True)
os.environ["NUMBA_DISABLE_JIT"] = "1"
from huggingface_hub import HfApi, HfFolder, upload_folder, snapshot_download
# 🔒 Eliminar hf_transfer si está presente
subprocess.run([sys.executable, "-m", "pip", "uninstall", "-y", "hf_transfer"])
# === Configuración ===
HF_MODEL_ID = "tu_usuario/xtts-v2-finetuned" # <--- cambia con tu repo en HF
HF_TOKEN = os.environ.get("HF_TOKEN") # Debe estar definido en tu Space/entorno
DATASET_PATH = "/home/user/app/dataset" # Ruta a tu dataset
OUTPUT_PATH = "/tmp/output_model"
BASE_MODEL = "coqui/XTTS-v2"
os.makedirs("/tmp/xtts_cache", exist_ok=True)
os.chmod("/tmp/xtts_cache", 0o777)
os.makedirs("/tmp/xtts_model", exist_ok=True)
os.chmod("/tmp/xtts_model", 0o777)
os.makedirs("/tmp/xtts_model/.huggingface", exist_ok=True)
os.chmod("/tmp/xtts_model/.huggingface", 0o777)
# Continúa con tu lógica, usando las nuevas rutas de manera consistent
# 🔧 Forzar descarga sin symlinks ni hf_transfer
model_dir = snapshot_download(
repo_id="coqui/XTTS-v2",
local_dir="/tmp/xtts_model", # descarga directa aquí
cache_dir="/tmp/hf_cache", # cache seguro en /tmp
#local_dir_use_symlinks=False, # 🔑 evita enlaces simbólicos
resume_download=True,
token=HF_TOKEN
)
print(f"✅ Modelo descargado en: {model_dir}")
CONFIG_PATH = "/tmp/xtts_model/config.json"
RESTORE_PATH = "/tmp/xtts_model/model.pth"
# === 2. Editar configuración para tu dataset VoxPopuli ===
print("=== Editando configuración para fine-tuning con VoxPopuli ===")
import json
with open(CONFIG_PATH, "r") as f:
config = json.load(f)
config["output_path"] = OUTPUT_PATH
config["datasets"] = [
{
"formatter": "voxpopuli",
"path": DATASET_PATH,
"meta_file_train": "metadata.json"
}
]
config["run_name"] = "xtts-finetune-voxpopuli"
config["lr"] = 1e-5 # más bajo para fine-tuning
with open(CONFIG_PATH, "w") as f:
json.dump(config, f, indent=2)
# === 3. Lanzar entrenamiento ===
print("=== Iniciando fine-tuning de XTTS-v2 ===")
import librosa
from librosa.core.spectrum import magphase
# Parchear dinámicamente
librosa.magphase = magphase
# subprocess.run([
# "python", "/home/user/TTS/TTS/bin/train_tts.py",
# "--config_path", CONFIG_PATH,
# "--restore_path", RESTORE_PATH
# ], check=True)
subprocess.run([
"python", "-m", "TTS.bin.train",
"--config_path", CONFIG_PATH,
"--restore_path", RESTORE_PATH
], check=True)
# === 4. Subir modelo resultante a HF ===
print("=== Subiendo modelo fine-tuneado a Hugging Face Hub ===")
api = HfApi()
HfFolder.save_token(HF_TOKEN)
upload_folder(
repo_id=HF_MODEL_ID,
repo_type="model",
folder_path=OUTPUT_PATH,
token=HF_TOKEN
)
print("✅ Fine-tuning completado y modelo subido a Hugging Face.")
|