Spaces:
Runtime error
Runtime error
| import pinecone | |
| # init connection to pinecone | |
| pinecone.init( | |
| api_key="0898750a-ee05-44f1-ac8a-98c5fef92f4a", # app.pinecone.io | |
| environment="asia-southeast1-gcp-free" # find next to api key | |
| ) | |
| # index_name = "hybrid-image-search" | |
| # if index_name not in pinecone.list_indexes(): | |
| # # create the index | |
| # pinecone.create_index( | |
| # index_name, | |
| # dimension=512, | |
| # metric="dotproduct", | |
| # pod_type="s1" | |
| # ) | |
| index_name = pinecone.list_indexes()[0] | |
| print(index_name) | |
| index = pinecone.GRPCIndex(index_name) | |
| from datasets import load_dataset | |
| # load the dataset from huggingface datasets hub | |
| fashion = load_dataset( | |
| "ashraq/fashion-product-images-small", | |
| split='train[:1000]' | |
| ) | |
| images = fashion["image"] | |
| metadata = fashion.remove_columns("image") | |
| images[900] | |
| import pandas as pd | |
| metadata = metadata.to_pandas() | |
| filtered = metadata[ (metadata['gender'] == 'Men') & (metadata['articleType'] == 'Jeans')& (metadata['baseColour'] == 'Blue')] | |
| print(len(filtered)) | |
| metadata.head() | |
| import requests | |
| with open('pinecone_text.py' ,'w') as fb: | |
| fb.write(requests.get('https://storage.googleapis.com/gareth-pinecone-datasets/pinecone_text.py').text) | |
| from transformers import BertTokenizerFast | |
| import pinecone_text | |
| # load bert tokenizer from huggingface | |
| tokenizer = BertTokenizerFast.from_pretrained( | |
| 'bert-base-uncased' | |
| ) | |
| def tokenize_func(text): | |
| token_ids = tokenizer( | |
| text, | |
| add_special_tokens=False | |
| )['input_ids'] | |
| return tokenizer.convert_ids_to_tokens(token_ids) | |
| bm25 = pinecone_text.BM25(tokenize_func) | |
| tokenize_func('Turtle Check Men Navy Blue Shirt') | |
| bm25.fit(metadata['productDisplayName']) | |
| display(metadata['productDisplayName'][0]) | |
| bm25.transform_query(metadata['productDisplayName'][0]) | |
| from sentence_transformers import SentenceTransformer | |
| import transformers.models.clip.image_processing_clip | |
| import torch | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| # load a CLIP model from huggingface | |
| model = SentenceTransformer( | |
| 'sentence-transformers/clip-ViT-B-32', | |
| device=device | |
| ) | |
| model | |
| dense_vec = model.encode([metadata['productDisplayName'][0]]) | |
| dense_vec.shape | |
| #len(fashion) | |
| """##Encode the dataset to index | |
| """ | |
| # from tqdm.auto import tqdm | |
| # batch_size = 200 | |
| # for i in tqdm(range(0, len(fashion), batch_size)): | |
| # # find end of batch | |
| # i_end = min(i+batch_size, len(fashion)) | |
| # # extract metadata batch | |
| # meta_batch = metadata.iloc[i:i_end] | |
| # meta_dict = meta_batch.to_dict(orient="records") | |
| # # concatinate all metadata field except for id and year to form a single string | |
| # meta_batch = [" ".join(x) for x in meta_batch.loc[:, ~meta_batch.columns.isin(['id', 'year'])].values.tolist()] | |
| # # extract image batch | |
| # img_batch = images[i:i_end] | |
| # # create sparse BM25 vectors | |
| # sparse_embeds = [bm25.transform_doc(text) for text in meta_batch] | |
| # # create dense vectors | |
| # dense_embeds = model.encode(img_batch).tolist() | |
| # # create unique IDs | |
| # ids = [str(x) for x in range(i, i_end)] | |
| # upserts = [] | |
| # # loop through the data and create dictionaries for uploading documents to pinecone index | |
| # for _id, sparse, dense, meta in zip(ids, sparse_embeds, dense_embeds, meta_dict): | |
| # upserts.append({ | |
| # 'id': _id, | |
| # 'sparse_values': sparse, | |
| # 'values': dense, | |
| # 'metadata': meta | |
| # }) | |
| # # upload the documents to the new hybrid index | |
| # index.upsert(upserts) | |
| # show index description after uploading the documents | |
| index.describe_index_stats() | |
| from IPython.core.display import HTML | |
| from io import BytesIO | |
| from base64 import b64encode | |
| import pinecone_text | |
| # function to display product images | |
| def display_result(image_batch): | |
| figures = [] | |
| for img in image_batch: | |
| b = BytesIO() | |
| img.save(b, format='png') | |
| figures.append(f''' | |
| <figure style="margin: 5px !important;"> | |
| <img src="data:image/png;base64,{b64encode(b.getvalue()).decode('utf-8')}" style="width: 90px; height: 120px" > | |
| </figure> | |
| ''') | |
| return HTML(data=f''' | |
| <div style="display: flex; flex-flow: row wrap; text-align: center;"> | |
| {''.join(figures)} | |
| </div> | |
| ''') | |
| def hybrid_scale(dense, sparse, alpha: float): | |
| """Hybrid vector scaling using a convex combination | |
| alpha * dense + (1 - alpha) * sparse | |
| Args: | |
| dense: Array of floats representing | |
| sparse: a dict of `indices` and `values` | |
| alpha: float between 0 and 1 where 0 == sparse only | |
| and 1 == dense only | |
| """ | |
| if alpha < 0 or alpha > 1: | |
| raise ValueError("Alpha must be between 0 and 1") | |
| # scale sparse and dense vectors to create hybrid search vecs | |
| hsparse = { | |
| 'indices': sparse['indices'], | |
| 'values': [v * (1 - alpha) for v in sparse['values']] | |
| } | |
| hdense = [v * alpha for v in dense] | |
| return hdense, hsparse | |
| def text_to_image(query, alpha, k_results): | |
| sparse = bm25.transform_query(query) | |
| dense = model.encode(query).tolist() | |
| # scale sparse and dense vectors | |
| hdense, hsparse = hybrid_scale(dense, sparse, alpha=alpha) | |
| # search | |
| result = index.query( | |
| top_k=k_results, | |
| vector=hdense, | |
| sparse_vector=hsparse, | |
| include_metadata=True | |
| ) | |
| # used returned product ids to get images | |
| imgs = [images[int(r["id"])] for r in result["matches"]] | |
| description = [] | |
| for x in result["matches"]: | |
| description.append( x["metadata"]['productDisplayName'] ) | |
| return imgs, description | |
| def show_dir_content(): | |
| for dirname, _, filenames in os.walk('./'): | |
| for filename in filenames: | |
| print(os.path.join(dirname, filename)) | |
| import shutil | |
| from PIL import Image | |
| import os | |
| counter = {"dir_num": 1} | |
| img_files = {'x':[]} | |
| def img_to_file_list(imgs): | |
| os.chdir('/content') | |
| path = "searches" | |
| sub_path = 'content/' + path + '/' + 'search' + '_' + str(counter["dir_num"]) | |
| # Check whether the specified path exists or not | |
| isExist = os.path.exists('content'+'/'+path) | |
| if not isExist: | |
| print("Directory does not exists") | |
| # Create a new directory because it does not exist | |
| os.makedirs('content'+'/'+path, exist_ok = True) | |
| print("The new directory is created!") | |
| #else: | |
| # os.chdir('/content/'+path) | |
| print("Subdir ->The Current working directory is: {0}".format(os.getcwd())) | |
| # Check whether the specified path exists or not | |
| isExist = os.path.exists(sub_path) | |
| if isExist: | |
| shutil.rmtree(sub_path) | |
| os.makedirs(sub_path, exist_ok = True) | |
| img_files = {'search'+str(counter["dir_num"]):[]} | |
| i = 0 | |
| curr_dir = os.getcwd() | |
| for img in imgs: | |
| img.save(sub_path+"/img_" + str(i) + ".png","PNG") | |
| img_files['search'+str(counter["dir_num"])].append(sub_path + '/' + 'img_'+ str(i) + ".png") | |
| i+=1 | |
| counter["dir_num"]+=1 | |
| return img_files['search'+str(counter["dir_num"]-1)] | |
| #print(os.getcwd()) | |
| # os.chdir('/content/searches') | |
| # print("The Current working directory is: {0}".format(os.getcwd())) | |
| # show_dir_content() | |
| # imgs2, descr = text_to_image('blue jeans for women', 0.5, 4) | |
| # print("The Current working directory is: {0}".format(os.getcwd())) | |
| # show_dir_content() | |
| # img_files = img_to_file_list(imgs2) | |
| # display(img_files) | |
| # print("The Current working directory is: {0}".format(os.getcwd())) | |
| # show_dir_content() | |
| # shutil.rmtree('/content/searches') | |
| # #shutil.rmtree('./content/searches') | |
| # #print("The Current working directory is: {0}".format(os.getcwd())) | |
| # #show_dir_content() | |
| # #counter, img_files = img_to_file_list(imgs1, counter, img_files) | |
| # #display(img_files) | |
| # #counter, img_files = img_to_file_list(imgs2) | |
| import gradio as gr | |
| from deep_translator import GoogleTranslator | |
| css = ''' | |
| .gallery img { | |
| width: 45px; | |
| height: 60px; | |
| object-fit: contain; | |
| } | |
| ''' | |
| counter = {"dir_num": 1} | |
| img_files = {'x':[]} | |
| def fake_gan(text, alpha): | |
| text_eng=GoogleTranslator(source='iw', target='en').translate(text) | |
| imgs, descr = text_to_image(text_eng, alpha, 3) | |
| img_files = img_to_file_list(imgs) | |
| return img_files | |
| def fake_text(text, alpha): | |
| en_text = GoogleTranslator(source='iw', target='en').translate(text) | |
| img , descr = text_to_image(en_text, alpha, 3) | |
| return descr | |
| with gr.Blocks() as demo: | |
| with gr.Row():#variant="compact"): | |
| text = gr.Textbox( | |
| value = "ื'ืื ืก ืืืื ืืืืจืื", | |
| label="Enter the product characteristics:", | |
| #show_label=True, | |
| #max_lines=1, | |
| #placeholder="Enter your prompt", | |
| ) | |
| alpha = gr.Slider(0, 1, step=0.01, label='Choose alpha:', value = 0.05) | |
| with gr.Row(): | |
| btn = gr.Button("Generate image") | |
| with gr.Row(): | |
| gallery = gr.Gallery( | |
| label="Generated images", show_label=False, elem_id="gallery" | |
| ).style(columns=[8], rows=[2], object_fit='scale-down', height='auto') | |
| with gr.Row(): | |
| selected = gr.Textbox(label="Product description: ", interactive=False, value = "-----> Description <-------",placeholder="Selected") | |
| btn.click(fake_gan, inputs=[text, alpha], outputs=gallery) | |
| def get_select_index(evt: gr.SelectData,text,alpha): | |
| print(evt.index) | |
| eng_text = fake_text(text, alpha)[evt.index] | |
| heb_text = GoogleTranslator(source='en', target='iw').translate(eng_text) | |
| return heb_text | |
| #gallery.select( get_select_index, None, selected ) | |
| gallery.select( fn=get_select_index, inputs=[text,alpha], outputs=selected ) | |
| demo.launch() | |
| #shutil.rmtree('/content/searches') | |