Spaces:
Build error
Build error
Samuel Mueller
commited on
Commit
·
5ee305c
1
Parent(s):
151173f
Readying initial version
Browse files- .gitmodules +3 -0
- README.md +1 -1
- TabPFN +1 -0
- app.py +95 -0
- balance-scale.arff +694 -0
- iris.csv +151 -0
- requirements.txt +16 -0
.gitmodules
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[submodule "TabPFN"]
|
| 2 |
+
path = TabPFN
|
| 3 |
+
url = [email protected]:automl/TabPFN.git
|
README.md
CHANGED
|
@@ -6,7 +6,7 @@ colorTo: blue
|
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.1.1
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.1.1
|
| 8 |
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
TabPFN
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 045c8400203ebd062346970b4f2c0ccda5a40618
|
app.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
sys.path.insert(0,'TabPFN') # our submodule of the TabPFN repo
|
| 3 |
+
from scripts.transformer_prediction_interface import TabPFNClassifier
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import torch
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import openml
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def compute(table: np.array):
|
| 13 |
+
vfunc = np.vectorize(lambda s: len(s))
|
| 14 |
+
non_empty_row_mask = (vfunc(table).sum(1) != 0)
|
| 15 |
+
table = table[non_empty_row_mask]
|
| 16 |
+
empty_mask = table == ''
|
| 17 |
+
empty_inds = np.where(empty_mask)
|
| 18 |
+
if not len(empty_inds[0]):
|
| 19 |
+
return "**Please leave at least one field blank for prediction.**", None
|
| 20 |
+
if not np.all(empty_inds[1][0] == empty_inds[1]):
|
| 21 |
+
return "**Please only leave fields of one column blank for prediction.**", None
|
| 22 |
+
y_column = empty_inds[1][0]
|
| 23 |
+
eval_lines = empty_inds[0]
|
| 24 |
+
|
| 25 |
+
train_table = np.delete(table, eval_lines, axis=0)
|
| 26 |
+
eval_table = table[eval_lines]
|
| 27 |
+
|
| 28 |
+
try:
|
| 29 |
+
x_train = torch.tensor(np.delete(train_table, y_column, axis=1).astype(np.float32))
|
| 30 |
+
x_eval = torch.tensor(np.delete(eval_table, y_column, axis=1).astype(np.float32))
|
| 31 |
+
|
| 32 |
+
y_train = train_table[:, y_column]
|
| 33 |
+
except ValueError:
|
| 34 |
+
return "**Please only add numbers (to the inputs) or leave fields empty.**", None
|
| 35 |
+
|
| 36 |
+
classifier = TabPFNClassifier(base_path='..', device='cpu')
|
| 37 |
+
classifier.fit(x_train, y_train)
|
| 38 |
+
y_eval, p_eval = classifier.predict(x_eval, return_winning_probability=True)
|
| 39 |
+
|
| 40 |
+
# print(file, type(file))
|
| 41 |
+
out_table = table.copy().astype(str)
|
| 42 |
+
out_table[eval_lines, y_column] = [f"{y_e} (p={p_e:.2f})" for y_e, p_e in zip(y_eval, p_eval)]
|
| 43 |
+
return None, out_table
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def upload_file(file):
|
| 47 |
+
if file.name.endswith('.arff'):
|
| 48 |
+
dataset = openml.datasets.OpenMLDataset('t', 'test', data_file=file.name)
|
| 49 |
+
X_, _, categorical_indicator_, attribute_names_ = dataset.get_data(
|
| 50 |
+
dataset_format="array"
|
| 51 |
+
)
|
| 52 |
+
df = pd.DataFrame(X_, columns=attribute_names_)
|
| 53 |
+
return df
|
| 54 |
+
elif file.name.endswith('.csv') or file.name.endswith('.data'):
|
| 55 |
+
df = pd.read_csv(file.name, header=None)
|
| 56 |
+
df.columns = np.arange(len(df.columns))
|
| 57 |
+
print(df)
|
| 58 |
+
return df
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
example = \
|
| 62 |
+
[
|
| 63 |
+
[1, 2, 1],
|
| 64 |
+
[2, 1, 1],
|
| 65 |
+
[1, 1, 1],
|
| 66 |
+
[2, 2, 2],
|
| 67 |
+
[3, 4, 2],
|
| 68 |
+
[3, 2, 2],
|
| 69 |
+
[2, 3, '']
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
with gr.Blocks() as demo:
|
| 73 |
+
gr.Markdown("""This demo allows you to play with the **TabPFN**.
|
| 74 |
+
You can either change the table manually (we have filled it with a toy benchmark, sum up to 3 has label 1 and over that label 2).
|
| 75 |
+
The network predicts fields you leave empty. Only one column can have empty entries that are predicted.
|
| 76 |
+
Please, provide everything but the label column as numeric values. It is ok to encode classes as integers.
|
| 77 |
+
""")
|
| 78 |
+
inp_table = gr.DataFrame(type='numpy', value=example, headers=[''] * 3)
|
| 79 |
+
inp_file = gr.File(
|
| 80 |
+
label='Drop either a .csv (without header, only numeric values for all but the labels) or a .arff file.')
|
| 81 |
+
examples = gr.Examples(examples=['iris.csv', 'balance-scale.arff'],
|
| 82 |
+
inputs=[inp_file],
|
| 83 |
+
outputs=[inp_table],
|
| 84 |
+
fn=upload_file,
|
| 85 |
+
cache_examples=True)
|
| 86 |
+
btn = gr.Button("Predict Empty Table Cells")
|
| 87 |
+
|
| 88 |
+
inp_file.change(fn=upload_file, inputs=inp_file, outputs=inp_table)
|
| 89 |
+
|
| 90 |
+
out_text = gr.Markdown()
|
| 91 |
+
out_table = gr.DataFrame()
|
| 92 |
+
|
| 93 |
+
btn.click(fn=compute, inputs=inp_table, outputs=[out_text, out_table])
|
| 94 |
+
|
| 95 |
+
demo.launch()
|
balance-scale.arff
ADDED
|
@@ -0,0 +1,694 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
%1. Title: Balance Scale Weight & Distance Database
|
| 2 |
+
%
|
| 3 |
+
%2. Source Information:
|
| 4 |
+
% (a) Source: Generated to model psychological experiments reported
|
| 5 |
+
% by Siegler, R. S. (1976). Three Aspects of Cognitive
|
| 6 |
+
% Development. Cognitive Psychology, 8, 481-520.
|
| 7 |
+
% (b) Donor: Tim Hume ([email protected])
|
| 8 |
+
% (c) Date: 22 April 1994
|
| 9 |
+
%
|
| 10 |
+
%3. Past Usage: (possibly different formats of this data)
|
| 11 |
+
% - Publications
|
| 12 |
+
% 1. Klahr, D., & Siegler, R.S. (1978). The Representation of
|
| 13 |
+
% Children's Knowledge. In H. W. Reese & L. P. Lipsitt (Eds.),
|
| 14 |
+
% Advances in Child Development and Behavior, pp. 61-116. New
|
| 15 |
+
% York: Academic Press
|
| 16 |
+
% 2. Langley,P. (1987). A General Theory of Discrimination
|
| 17 |
+
% Learning. In D. Klahr, P. Langley, & R. Neches (Eds.),
|
| 18 |
+
% Production System Models of Learning and Development, pp.
|
| 19 |
+
% 99-161. Cambridge, MA: MIT Press
|
| 20 |
+
% 3. Newell, A. (1990). Unified Theories of Cognition.
|
| 21 |
+
% Cambridge, MA: Harvard University Press
|
| 22 |
+
% 4. McClelland, J.L. (1988). Parallel Distibuted Processing:
|
| 23 |
+
% Implications for Cognition and Development. Technical
|
| 24 |
+
% Report AIP-47, Department of Psychology, Carnegie-Mellon
|
| 25 |
+
% University
|
| 26 |
+
% 5. Shultz, T., Mareschal, D., & Schmidt, W. (1994). Modeling
|
| 27 |
+
% Cognitive Development on Balance Scale Phenomena. Machine
|
| 28 |
+
% Learning, Vol. 16, pp. 59-88.
|
| 29 |
+
%
|
| 30 |
+
%4. Relevant Information:
|
| 31 |
+
% This data set was generated to model psychological
|
| 32 |
+
% experimental results. Each example is classified as having the
|
| 33 |
+
% balance scale tip to the right, tip to the left, or be
|
| 34 |
+
% balanced. The attributes are the left weight, the left
|
| 35 |
+
% distance, the right weight, and the right distance. The
|
| 36 |
+
% correct way to find the class is the greater of
|
| 37 |
+
% (left-distance * left-weight) and (right-distance *
|
| 38 |
+
% right-weight). If they are equal, it is balanced.
|
| 39 |
+
%
|
| 40 |
+
%5. Number of Instances: 625 (49 balanced, 288 left, 288 right)
|
| 41 |
+
%
|
| 42 |
+
%6. Number of Attributes: 4 (numeric) + class name = 5
|
| 43 |
+
%
|
| 44 |
+
%7. Attribute Information:
|
| 45 |
+
% 1. Class Name: 3 (L, B, R)
|
| 46 |
+
% 2. Left-Weight: 5 (1, 2, 3, 4, 5)
|
| 47 |
+
% 3. Left-Distance: 5 (1, 2, 3, 4, 5)
|
| 48 |
+
% 4. Right-Weight: 5 (1, 2, 3, 4, 5)
|
| 49 |
+
% 5. Right-Distance: 5 (1, 2, 3, 4, 5)
|
| 50 |
+
%
|
| 51 |
+
%8. Missing Attribute Values:
|
| 52 |
+
% none
|
| 53 |
+
%
|
| 54 |
+
%9. Class Distribution:
|
| 55 |
+
% 1. 46.08 percent are L
|
| 56 |
+
% 2. 07.84 percent are B
|
| 57 |
+
% 3. 46.08 percent are R
|
| 58 |
+
%
|
| 59 |
+
|
| 60 |
+
@relation balance-scale
|
| 61 |
+
@attribute 'left-weight' real
|
| 62 |
+
@attribute 'left-distance' real
|
| 63 |
+
@attribute 'right-weight' real
|
| 64 |
+
@attribute 'right-distance' real
|
| 65 |
+
@attribute 'class' { L, B, R}
|
| 66 |
+
@data
|
| 67 |
+
1,1,1,1,B
|
| 68 |
+
1,1,1,2,R
|
| 69 |
+
1,1,1,3,R
|
| 70 |
+
1,1,1,4,R
|
| 71 |
+
1,1,1,5,R
|
| 72 |
+
1,1,2,1,R
|
| 73 |
+
1,1,2,2,R
|
| 74 |
+
1,1,2,3,R
|
| 75 |
+
1,1,2,4,R
|
| 76 |
+
1,1,2,5,R
|
| 77 |
+
1,1,3,1,R
|
| 78 |
+
1,1,3,2,R
|
| 79 |
+
1,1,3,3,R
|
| 80 |
+
1,1,3,4,R
|
| 81 |
+
1,1,3,5,R
|
| 82 |
+
1,1,4,1,R
|
| 83 |
+
1,1,4,2,R
|
| 84 |
+
1,1,4,3,R
|
| 85 |
+
1,1,4,4,R
|
| 86 |
+
1,1,4,5,R
|
| 87 |
+
1,1,5,1,R
|
| 88 |
+
1,1,5,2,R
|
| 89 |
+
1,1,5,3,R
|
| 90 |
+
1,1,5,4,R
|
| 91 |
+
1,1,5,5,R
|
| 92 |
+
1,2,1,1,L
|
| 93 |
+
1,2,1,2,B
|
| 94 |
+
1,2,1,3,R
|
| 95 |
+
1,2,1,4,R
|
| 96 |
+
1,2,1,5,R
|
| 97 |
+
1,2,2,1,B
|
| 98 |
+
1,2,2,2,R
|
| 99 |
+
1,2,2,3,R
|
| 100 |
+
1,2,2,4,R
|
| 101 |
+
1,2,2,5,R
|
| 102 |
+
1,2,3,1,R
|
| 103 |
+
1,2,3,2,R
|
| 104 |
+
1,2,3,3,R
|
| 105 |
+
1,2,3,4,R
|
| 106 |
+
1,2,3,5,R
|
| 107 |
+
1,2,4,1,R
|
| 108 |
+
1,2,4,2,R
|
| 109 |
+
1,2,4,3,R
|
| 110 |
+
1,2,4,4,R
|
| 111 |
+
1,2,4,5,R
|
| 112 |
+
1,2,5,1,R
|
| 113 |
+
1,2,5,2,R
|
| 114 |
+
1,2,5,3,R
|
| 115 |
+
1,2,5,4,R
|
| 116 |
+
1,2,5,5,R
|
| 117 |
+
1,3,1,1,L
|
| 118 |
+
1,3,1,2,L
|
| 119 |
+
1,3,1,3,B
|
| 120 |
+
1,3,1,4,R
|
| 121 |
+
1,3,1,5,R
|
| 122 |
+
1,3,2,1,L
|
| 123 |
+
1,3,2,2,R
|
| 124 |
+
1,3,2,3,R
|
| 125 |
+
1,3,2,4,R
|
| 126 |
+
1,3,2,5,R
|
| 127 |
+
1,3,3,1,B
|
| 128 |
+
1,3,3,2,R
|
| 129 |
+
1,3,3,3,R
|
| 130 |
+
1,3,3,4,R
|
| 131 |
+
1,3,3,5,R
|
| 132 |
+
1,3,4,1,R
|
| 133 |
+
1,3,4,2,R
|
| 134 |
+
1,3,4,3,R
|
| 135 |
+
1,3,4,4,R
|
| 136 |
+
1,3,4,5,R
|
| 137 |
+
1,3,5,1,R
|
| 138 |
+
1,3,5,2,R
|
| 139 |
+
1,3,5,3,R
|
| 140 |
+
1,3,5,4,R
|
| 141 |
+
1,3,5,5,R
|
| 142 |
+
1,4,1,1,L
|
| 143 |
+
1,4,1,2,L
|
| 144 |
+
1,4,1,3,L
|
| 145 |
+
1,4,1,4,B
|
| 146 |
+
1,4,1,5,R
|
| 147 |
+
1,4,2,1,L
|
| 148 |
+
1,4,2,2,B
|
| 149 |
+
1,4,2,3,R
|
| 150 |
+
1,4,2,4,R
|
| 151 |
+
1,4,2,5,R
|
| 152 |
+
1,4,3,1,L
|
| 153 |
+
1,4,3,2,R
|
| 154 |
+
1,4,3,3,R
|
| 155 |
+
1,4,3,4,R
|
| 156 |
+
1,4,3,5,R
|
| 157 |
+
1,4,4,1,B
|
| 158 |
+
1,4,4,2,R
|
| 159 |
+
1,4,4,3,R
|
| 160 |
+
1,4,4,4,R
|
| 161 |
+
1,4,4,5,R
|
| 162 |
+
1,4,5,1,R
|
| 163 |
+
1,4,5,2,R
|
| 164 |
+
1,4,5,3,R
|
| 165 |
+
1,4,5,4,R
|
| 166 |
+
1,4,5,5,R
|
| 167 |
+
1,5,1,1,L
|
| 168 |
+
1,5,1,2,L
|
| 169 |
+
1,5,1,3,L
|
| 170 |
+
1,5,1,4,L
|
| 171 |
+
1,5,1,5,B
|
| 172 |
+
1,5,2,1,L
|
| 173 |
+
1,5,2,2,L
|
| 174 |
+
1,5,2,3,R
|
| 175 |
+
1,5,2,4,R
|
| 176 |
+
1,5,2,5,R
|
| 177 |
+
1,5,3,1,L
|
| 178 |
+
1,5,3,2,R
|
| 179 |
+
1,5,3,3,R
|
| 180 |
+
1,5,3,4,R
|
| 181 |
+
1,5,3,5,R
|
| 182 |
+
1,5,4,1,L
|
| 183 |
+
1,5,4,2,R
|
| 184 |
+
1,5,4,3,R
|
| 185 |
+
1,5,4,4,R
|
| 186 |
+
1,5,4,5,R
|
| 187 |
+
1,5,5,1,B
|
| 188 |
+
1,5,5,2,R
|
| 189 |
+
1,5,5,3,R
|
| 190 |
+
1,5,5,4,R
|
| 191 |
+
1,5,5,5,R
|
| 192 |
+
2,1,1,1,L
|
| 193 |
+
2,1,1,2,B
|
| 194 |
+
2,1,1,3,R
|
| 195 |
+
2,1,1,4,R
|
| 196 |
+
2,1,1,5,R
|
| 197 |
+
2,1,2,1,B
|
| 198 |
+
2,1,2,2,R
|
| 199 |
+
2,1,2,3,R
|
| 200 |
+
2,1,2,4,R
|
| 201 |
+
2,1,2,5,R
|
| 202 |
+
2,1,3,1,R
|
| 203 |
+
2,1,3,2,R
|
| 204 |
+
2,1,3,3,R
|
| 205 |
+
2,1,3,4,R
|
| 206 |
+
2,1,3,5,R
|
| 207 |
+
2,1,4,1,R
|
| 208 |
+
2,1,4,2,R
|
| 209 |
+
2,1,4,3,R
|
| 210 |
+
2,1,4,4,R
|
| 211 |
+
2,1,4,5,R
|
| 212 |
+
2,1,5,1,R
|
| 213 |
+
2,1,5,2,R
|
| 214 |
+
2,1,5,3,R
|
| 215 |
+
2,1,5,4,R
|
| 216 |
+
2,1,5,5,R
|
| 217 |
+
2,2,1,1,L
|
| 218 |
+
2,2,1,2,L
|
| 219 |
+
2,2,1,3,L
|
| 220 |
+
2,2,1,4,B
|
| 221 |
+
2,2,1,5,R
|
| 222 |
+
2,2,2,1,L
|
| 223 |
+
2,2,2,2,B
|
| 224 |
+
2,2,2,3,R
|
| 225 |
+
2,2,2,4,R
|
| 226 |
+
2,2,2,5,R
|
| 227 |
+
2,2,3,1,L
|
| 228 |
+
2,2,3,2,R
|
| 229 |
+
2,2,3,3,R
|
| 230 |
+
2,2,3,4,R
|
| 231 |
+
2,2,3,5,R
|
| 232 |
+
2,2,4,1,B
|
| 233 |
+
2,2,4,2,R
|
| 234 |
+
2,2,4,3,R
|
| 235 |
+
2,2,4,4,R
|
| 236 |
+
2,2,4,5,R
|
| 237 |
+
2,2,5,1,R
|
| 238 |
+
2,2,5,2,R
|
| 239 |
+
2,2,5,3,R
|
| 240 |
+
2,2,5,4,R
|
| 241 |
+
2,2,5,5,R
|
| 242 |
+
2,3,1,1,L
|
| 243 |
+
2,3,1,2,L
|
| 244 |
+
2,3,1,3,L
|
| 245 |
+
2,3,1,4,L
|
| 246 |
+
2,3,1,5,L
|
| 247 |
+
2,3,2,1,L
|
| 248 |
+
2,3,2,2,L
|
| 249 |
+
2,3,2,3,B
|
| 250 |
+
2,3,2,4,R
|
| 251 |
+
2,3,2,5,R
|
| 252 |
+
2,3,3,1,L
|
| 253 |
+
2,3,3,2,B
|
| 254 |
+
2,3,3,3,R
|
| 255 |
+
2,3,3,4,R
|
| 256 |
+
2,3,3,5,R
|
| 257 |
+
2,3,4,1,L
|
| 258 |
+
2,3,4,2,R
|
| 259 |
+
2,3,4,3,R
|
| 260 |
+
2,3,4,4,R
|
| 261 |
+
2,3,4,5,R
|
| 262 |
+
2,3,5,1,L
|
| 263 |
+
2,3,5,2,R
|
| 264 |
+
2,3,5,3,R
|
| 265 |
+
2,3,5,4,R
|
| 266 |
+
2,3,5,5,R
|
| 267 |
+
2,4,1,1,L
|
| 268 |
+
2,4,1,2,L
|
| 269 |
+
2,4,1,3,L
|
| 270 |
+
2,4,1,4,L
|
| 271 |
+
2,4,1,5,L
|
| 272 |
+
2,4,2,1,L
|
| 273 |
+
2,4,2,2,L
|
| 274 |
+
2,4,2,3,L
|
| 275 |
+
2,4,2,4,B
|
| 276 |
+
2,4,2,5,R
|
| 277 |
+
2,4,3,1,L
|
| 278 |
+
2,4,3,2,L
|
| 279 |
+
2,4,3,3,R
|
| 280 |
+
2,4,3,4,R
|
| 281 |
+
2,4,3,5,R
|
| 282 |
+
2,4,4,1,L
|
| 283 |
+
2,4,4,2,B
|
| 284 |
+
2,4,4,3,R
|
| 285 |
+
2,4,4,4,R
|
| 286 |
+
2,4,4,5,R
|
| 287 |
+
2,4,5,1,L
|
| 288 |
+
2,4,5,2,R
|
| 289 |
+
2,4,5,3,R
|
| 290 |
+
2,4,5,4,R
|
| 291 |
+
2,4,5,5,R
|
| 292 |
+
2,5,1,1,L
|
| 293 |
+
2,5,1,2,L
|
| 294 |
+
2,5,1,3,L
|
| 295 |
+
2,5,1,4,L
|
| 296 |
+
2,5,1,5,L
|
| 297 |
+
2,5,2,1,L
|
| 298 |
+
2,5,2,2,L
|
| 299 |
+
2,5,2,3,L
|
| 300 |
+
2,5,2,4,L
|
| 301 |
+
2,5,2,5,B
|
| 302 |
+
2,5,3,1,L
|
| 303 |
+
2,5,3,2,L
|
| 304 |
+
2,5,3,3,L
|
| 305 |
+
2,5,3,4,R
|
| 306 |
+
2,5,3,5,R
|
| 307 |
+
2,5,4,1,L
|
| 308 |
+
2,5,4,2,L
|
| 309 |
+
2,5,4,3,R
|
| 310 |
+
2,5,4,4,R
|
| 311 |
+
2,5,4,5,R
|
| 312 |
+
2,5,5,1,L
|
| 313 |
+
2,5,5,2,B
|
| 314 |
+
2,5,5,3,R
|
| 315 |
+
2,5,5,4,R
|
| 316 |
+
2,5,5,5,R
|
| 317 |
+
3,1,1,1,L
|
| 318 |
+
3,1,1,2,L
|
| 319 |
+
3,1,1,3,B
|
| 320 |
+
3,1,1,4,R
|
| 321 |
+
3,1,1,5,R
|
| 322 |
+
3,1,2,1,L
|
| 323 |
+
3,1,2,2,R
|
| 324 |
+
3,1,2,3,R
|
| 325 |
+
3,1,2,4,R
|
| 326 |
+
3,1,2,5,R
|
| 327 |
+
3,1,3,1,B
|
| 328 |
+
3,1,3,2,R
|
| 329 |
+
3,1,3,3,R
|
| 330 |
+
3,1,3,4,R
|
| 331 |
+
3,1,3,5,R
|
| 332 |
+
3,1,4,1,R
|
| 333 |
+
3,1,4,2,R
|
| 334 |
+
3,1,4,3,R
|
| 335 |
+
3,1,4,4,R
|
| 336 |
+
3,1,4,5,R
|
| 337 |
+
3,1,5,1,R
|
| 338 |
+
3,1,5,2,R
|
| 339 |
+
3,1,5,3,R
|
| 340 |
+
3,1,5,4,R
|
| 341 |
+
3,1,5,5,R
|
| 342 |
+
3,2,1,1,L
|
| 343 |
+
3,2,1,2,L
|
| 344 |
+
3,2,1,3,L
|
| 345 |
+
3,2,1,4,L
|
| 346 |
+
3,2,1,5,L
|
| 347 |
+
3,2,2,1,L
|
| 348 |
+
3,2,2,2,L
|
| 349 |
+
3,2,2,3,B
|
| 350 |
+
3,2,2,4,R
|
| 351 |
+
3,2,2,5,R
|
| 352 |
+
3,2,3,1,L
|
| 353 |
+
3,2,3,2,B
|
| 354 |
+
3,2,3,3,R
|
| 355 |
+
3,2,3,4,R
|
| 356 |
+
3,2,3,5,R
|
| 357 |
+
3,2,4,1,L
|
| 358 |
+
3,2,4,2,R
|
| 359 |
+
3,2,4,3,R
|
| 360 |
+
3,2,4,4,R
|
| 361 |
+
3,2,4,5,R
|
| 362 |
+
3,2,5,1,L
|
| 363 |
+
3,2,5,2,R
|
| 364 |
+
3,2,5,3,R
|
| 365 |
+
3,2,5,4,R
|
| 366 |
+
3,2,5,5,R
|
| 367 |
+
3,3,1,1,L
|
| 368 |
+
3,3,1,2,L
|
| 369 |
+
3,3,1,3,L
|
| 370 |
+
3,3,1,4,L
|
| 371 |
+
3,3,1,5,L
|
| 372 |
+
3,3,2,1,L
|
| 373 |
+
3,3,2,2,L
|
| 374 |
+
3,3,2,3,L
|
| 375 |
+
3,3,2,4,L
|
| 376 |
+
3,3,2,5,R
|
| 377 |
+
3,3,3,1,L
|
| 378 |
+
3,3,3,2,L
|
| 379 |
+
3,3,3,3,B
|
| 380 |
+
3,3,3,4,R
|
| 381 |
+
3,3,3,5,R
|
| 382 |
+
3,3,4,1,L
|
| 383 |
+
3,3,4,2,L
|
| 384 |
+
3,3,4,3,R
|
| 385 |
+
3,3,4,4,R
|
| 386 |
+
3,3,4,5,R
|
| 387 |
+
3,3,5,1,L
|
| 388 |
+
3,3,5,2,R
|
| 389 |
+
3,3,5,3,R
|
| 390 |
+
3,3,5,4,R
|
| 391 |
+
3,3,5,5,R
|
| 392 |
+
3,4,1,1,L
|
| 393 |
+
3,4,1,2,L
|
| 394 |
+
3,4,1,3,L
|
| 395 |
+
3,4,1,4,L
|
| 396 |
+
3,4,1,5,L
|
| 397 |
+
3,4,2,1,L
|
| 398 |
+
3,4,2,2,L
|
| 399 |
+
3,4,2,3,L
|
| 400 |
+
3,4,2,4,L
|
| 401 |
+
3,4,2,5,L
|
| 402 |
+
3,4,3,1,L
|
| 403 |
+
3,4,3,2,L
|
| 404 |
+
3,4,3,3,L
|
| 405 |
+
3,4,3,4,B
|
| 406 |
+
3,4,3,5,R
|
| 407 |
+
3,4,4,1,L
|
| 408 |
+
3,4,4,2,L
|
| 409 |
+
3,4,4,3,B
|
| 410 |
+
3,4,4,4,R
|
| 411 |
+
3,4,4,5,R
|
| 412 |
+
3,4,5,1,L
|
| 413 |
+
3,4,5,2,L
|
| 414 |
+
3,4,5,3,R
|
| 415 |
+
3,4,5,4,R
|
| 416 |
+
3,4,5,5,R
|
| 417 |
+
3,5,1,1,L
|
| 418 |
+
3,5,1,2,L
|
| 419 |
+
3,5,1,3,L
|
| 420 |
+
3,5,1,4,L
|
| 421 |
+
3,5,1,5,L
|
| 422 |
+
3,5,2,1,L
|
| 423 |
+
3,5,2,2,L
|
| 424 |
+
3,5,2,3,L
|
| 425 |
+
3,5,2,4,L
|
| 426 |
+
3,5,2,5,L
|
| 427 |
+
3,5,3,1,L
|
| 428 |
+
3,5,3,2,L
|
| 429 |
+
3,5,3,3,L
|
| 430 |
+
3,5,3,4,L
|
| 431 |
+
3,5,3,5,B
|
| 432 |
+
3,5,4,1,L
|
| 433 |
+
3,5,4,2,L
|
| 434 |
+
3,5,4,3,L
|
| 435 |
+
3,5,4,4,R
|
| 436 |
+
3,5,4,5,R
|
| 437 |
+
3,5,5,1,L
|
| 438 |
+
3,5,5,2,L
|
| 439 |
+
3,5,5,3,B
|
| 440 |
+
3,5,5,4,R
|
| 441 |
+
3,5,5,5,R
|
| 442 |
+
4,1,1,1,L
|
| 443 |
+
4,1,1,2,L
|
| 444 |
+
4,1,1,3,L
|
| 445 |
+
4,1,1,4,B
|
| 446 |
+
4,1,1,5,R
|
| 447 |
+
4,1,2,1,L
|
| 448 |
+
4,1,2,2,B
|
| 449 |
+
4,1,2,3,R
|
| 450 |
+
4,1,2,4,R
|
| 451 |
+
4,1,2,5,R
|
| 452 |
+
4,1,3,1,L
|
| 453 |
+
4,1,3,2,R
|
| 454 |
+
4,1,3,3,R
|
| 455 |
+
4,1,3,4,R
|
| 456 |
+
4,1,3,5,R
|
| 457 |
+
4,1,4,1,B
|
| 458 |
+
4,1,4,2,R
|
| 459 |
+
4,1,4,3,R
|
| 460 |
+
4,1,4,4,R
|
| 461 |
+
4,1,4,5,R
|
| 462 |
+
4,1,5,1,R
|
| 463 |
+
4,1,5,2,R
|
| 464 |
+
4,1,5,3,R
|
| 465 |
+
4,1,5,4,R
|
| 466 |
+
4,1,5,5,R
|
| 467 |
+
4,2,1,1,L
|
| 468 |
+
4,2,1,2,L
|
| 469 |
+
4,2,1,3,L
|
| 470 |
+
4,2,1,4,L
|
| 471 |
+
4,2,1,5,L
|
| 472 |
+
4,2,2,1,L
|
| 473 |
+
4,2,2,2,L
|
| 474 |
+
4,2,2,3,L
|
| 475 |
+
4,2,2,4,B
|
| 476 |
+
4,2,2,5,R
|
| 477 |
+
4,2,3,1,L
|
| 478 |
+
4,2,3,2,L
|
| 479 |
+
4,2,3,3,R
|
| 480 |
+
4,2,3,4,R
|
| 481 |
+
4,2,3,5,R
|
| 482 |
+
4,2,4,1,L
|
| 483 |
+
4,2,4,2,B
|
| 484 |
+
4,2,4,3,R
|
| 485 |
+
4,2,4,4,R
|
| 486 |
+
4,2,4,5,R
|
| 487 |
+
4,2,5,1,L
|
| 488 |
+
4,2,5,2,R
|
| 489 |
+
4,2,5,3,R
|
| 490 |
+
4,2,5,4,R
|
| 491 |
+
4,2,5,5,R
|
| 492 |
+
4,3,1,1,L
|
| 493 |
+
4,3,1,2,L
|
| 494 |
+
4,3,1,3,L
|
| 495 |
+
4,3,1,4,L
|
| 496 |
+
4,3,1,5,L
|
| 497 |
+
4,3,2,1,L
|
| 498 |
+
4,3,2,2,L
|
| 499 |
+
4,3,2,3,L
|
| 500 |
+
4,3,2,4,L
|
| 501 |
+
4,3,2,5,L
|
| 502 |
+
4,3,3,1,L
|
| 503 |
+
4,3,3,2,L
|
| 504 |
+
4,3,3,3,L
|
| 505 |
+
4,3,3,4,B
|
| 506 |
+
4,3,3,5,R
|
| 507 |
+
4,3,4,1,L
|
| 508 |
+
4,3,4,2,L
|
| 509 |
+
4,3,4,3,B
|
| 510 |
+
4,3,4,4,R
|
| 511 |
+
4,3,4,5,R
|
| 512 |
+
4,3,5,1,L
|
| 513 |
+
4,3,5,2,L
|
| 514 |
+
4,3,5,3,R
|
| 515 |
+
4,3,5,4,R
|
| 516 |
+
4,3,5,5,R
|
| 517 |
+
4,4,1,1,L
|
| 518 |
+
4,4,1,2,L
|
| 519 |
+
4,4,1,3,L
|
| 520 |
+
4,4,1,4,L
|
| 521 |
+
4,4,1,5,L
|
| 522 |
+
4,4,2,1,L
|
| 523 |
+
4,4,2,2,L
|
| 524 |
+
4,4,2,3,L
|
| 525 |
+
4,4,2,4,L
|
| 526 |
+
4,4,2,5,L
|
| 527 |
+
4,4,3,1,L
|
| 528 |
+
4,4,3,2,L
|
| 529 |
+
4,4,3,3,L
|
| 530 |
+
4,4,3,4,L
|
| 531 |
+
4,4,3,5,L
|
| 532 |
+
4,4,4,1,L
|
| 533 |
+
4,4,4,2,L
|
| 534 |
+
4,4,4,3,L
|
| 535 |
+
4,4,4,4,B
|
| 536 |
+
4,4,4,5,R
|
| 537 |
+
4,4,5,1,L
|
| 538 |
+
4,4,5,2,L
|
| 539 |
+
4,4,5,3,L
|
| 540 |
+
4,4,5,4,R
|
| 541 |
+
4,4,5,5,R
|
| 542 |
+
4,5,1,1,L
|
| 543 |
+
4,5,1,2,L
|
| 544 |
+
4,5,1,3,L
|
| 545 |
+
4,5,1,4,L
|
| 546 |
+
4,5,1,5,L
|
| 547 |
+
4,5,2,1,L
|
| 548 |
+
4,5,2,2,L
|
| 549 |
+
4,5,2,3,L
|
| 550 |
+
4,5,2,4,L
|
| 551 |
+
4,5,2,5,L
|
| 552 |
+
4,5,3,1,L
|
| 553 |
+
4,5,3,2,L
|
| 554 |
+
4,5,3,3,L
|
| 555 |
+
4,5,3,4,L
|
| 556 |
+
4,5,3,5,L
|
| 557 |
+
4,5,4,1,L
|
| 558 |
+
4,5,4,2,L
|
| 559 |
+
4,5,4,3,L
|
| 560 |
+
4,5,4,4,L
|
| 561 |
+
4,5,4,5,B
|
| 562 |
+
4,5,5,1,L
|
| 563 |
+
4,5,5,2,L
|
| 564 |
+
4,5,5,3,L
|
| 565 |
+
4,5,5,4,B
|
| 566 |
+
4,5,5,5,R
|
| 567 |
+
5,1,1,1,L
|
| 568 |
+
5,1,1,2,L
|
| 569 |
+
5,1,1,3,L
|
| 570 |
+
5,1,1,4,L
|
| 571 |
+
5,1,1,5,B
|
| 572 |
+
5,1,2,1,L
|
| 573 |
+
5,1,2,2,L
|
| 574 |
+
5,1,2,3,R
|
| 575 |
+
5,1,2,4,R
|
| 576 |
+
5,1,2,5,R
|
| 577 |
+
5,1,3,1,L
|
| 578 |
+
5,1,3,2,R
|
| 579 |
+
5,1,3,3,R
|
| 580 |
+
5,1,3,4,R
|
| 581 |
+
5,1,3,5,R
|
| 582 |
+
5,1,4,1,L
|
| 583 |
+
5,1,4,2,R
|
| 584 |
+
5,1,4,3,R
|
| 585 |
+
5,1,4,4,R
|
| 586 |
+
5,1,4,5,R
|
| 587 |
+
5,1,5,1,B
|
| 588 |
+
5,1,5,2,R
|
| 589 |
+
5,1,5,3,R
|
| 590 |
+
5,1,5,4,R
|
| 591 |
+
5,1,5,5,R
|
| 592 |
+
5,2,1,1,L
|
| 593 |
+
5,2,1,2,L
|
| 594 |
+
5,2,1,3,L
|
| 595 |
+
5,2,1,4,L
|
| 596 |
+
5,2,1,5,L
|
| 597 |
+
5,2,2,1,L
|
| 598 |
+
5,2,2,2,L
|
| 599 |
+
5,2,2,3,L
|
| 600 |
+
5,2,2,4,L
|
| 601 |
+
5,2,2,5,B
|
| 602 |
+
5,2,3,1,L
|
| 603 |
+
5,2,3,2,L
|
| 604 |
+
5,2,3,3,L
|
| 605 |
+
5,2,3,4,R
|
| 606 |
+
5,2,3,5,R
|
| 607 |
+
5,2,4,1,L
|
| 608 |
+
5,2,4,2,L
|
| 609 |
+
5,2,4,3,R
|
| 610 |
+
5,2,4,4,R
|
| 611 |
+
5,2,4,5,R
|
| 612 |
+
5,2,5,1,L
|
| 613 |
+
5,2,5,2,B
|
| 614 |
+
5,2,5,3,R
|
| 615 |
+
5,2,5,4,R
|
| 616 |
+
5,2,5,5,R
|
| 617 |
+
5,3,1,1,L
|
| 618 |
+
5,3,1,2,L
|
| 619 |
+
5,3,1,3,L
|
| 620 |
+
5,3,1,4,L
|
| 621 |
+
5,3,1,5,L
|
| 622 |
+
5,3,2,1,L
|
| 623 |
+
5,3,2,2,L
|
| 624 |
+
5,3,2,3,L
|
| 625 |
+
5,3,2,4,L
|
| 626 |
+
5,3,2,5,L
|
| 627 |
+
5,3,3,1,L
|
| 628 |
+
5,3,3,2,L
|
| 629 |
+
5,3,3,3,L
|
| 630 |
+
5,3,3,4,L
|
| 631 |
+
5,3,3,5,B
|
| 632 |
+
5,3,4,1,L
|
| 633 |
+
5,3,4,2,L
|
| 634 |
+
5,3,4,3,L
|
| 635 |
+
5,3,4,4,R
|
| 636 |
+
5,3,4,5,R
|
| 637 |
+
5,3,5,1,L
|
| 638 |
+
5,3,5,2,L
|
| 639 |
+
5,3,5,3,B
|
| 640 |
+
5,3,5,4,R
|
| 641 |
+
5,3,5,5,R
|
| 642 |
+
5,4,1,1,L
|
| 643 |
+
5,4,1,2,L
|
| 644 |
+
5,4,1,3,L
|
| 645 |
+
5,4,1,4,L
|
| 646 |
+
5,4,1,5,L
|
| 647 |
+
5,4,2,1,L
|
| 648 |
+
5,4,2,2,L
|
| 649 |
+
5,4,2,3,L
|
| 650 |
+
5,4,2,4,L
|
| 651 |
+
5,4,2,5,L
|
| 652 |
+
5,4,3,1,L
|
| 653 |
+
5,4,3,2,L
|
| 654 |
+
5,4,3,3,L
|
| 655 |
+
5,4,3,4,L
|
| 656 |
+
5,4,3,5,L
|
| 657 |
+
5,4,4,1,L
|
| 658 |
+
5,4,4,2,L
|
| 659 |
+
5,4,4,3,L
|
| 660 |
+
5,4,4,4,L
|
| 661 |
+
5,4,4,5,B
|
| 662 |
+
5,4,5,1,L
|
| 663 |
+
5,4,5,2,L
|
| 664 |
+
5,4,5,3,L
|
| 665 |
+
5,4,5,4,B
|
| 666 |
+
5,4,5,5,R
|
| 667 |
+
5,5,1,1,L
|
| 668 |
+
5,5,1,2,L
|
| 669 |
+
5,5,1,3,L
|
| 670 |
+
5,5,1,4,L
|
| 671 |
+
5,5,1,5,L
|
| 672 |
+
5,5,2,1,L
|
| 673 |
+
5,5,2,2,L
|
| 674 |
+
5,5,2,3,L
|
| 675 |
+
5,5,2,4,L
|
| 676 |
+
5,5,2,5,L
|
| 677 |
+
5,5,3,1,L
|
| 678 |
+
5,5,3,2,L
|
| 679 |
+
5,5,3,3,L
|
| 680 |
+
5,5,3,4,L
|
| 681 |
+
5,5,3,5,L
|
| 682 |
+
5,5,4,1,L
|
| 683 |
+
5,5,4,2,L
|
| 684 |
+
5,5,4,3,L
|
| 685 |
+
5,5,4,4,L
|
| 686 |
+
5,5,4,5,L
|
| 687 |
+
5,5,5,1,L
|
| 688 |
+
5,5,5,2,L
|
| 689 |
+
5,5,5,3,L
|
| 690 |
+
5,5,5,4,L
|
| 691 |
+
5,5,5,5,B
|
| 692 |
+
%
|
| 693 |
+
%
|
| 694 |
+
%
|
iris.csv
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
5.1,3.5,1.4,0.2,Iris-setosa
|
| 2 |
+
4.9,3.0,1.4,0.2,Iris-setosa
|
| 3 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 4 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
| 5 |
+
5.0,3.6,1.4,0.2,Iris-setosa
|
| 6 |
+
5.4,3.9,1.7,0.4,Iris-setosa
|
| 7 |
+
4.6,3.4,1.4,0.3,Iris-setosa
|
| 8 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 9 |
+
4.4,2.9,1.4,0.2,Iris-setosa
|
| 10 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 11 |
+
5.4,3.7,1.5,0.2,Iris-setosa
|
| 12 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 13 |
+
4.8,3.0,1.4,0.1,Iris-setosa
|
| 14 |
+
4.3,3.0,1.1,0.1,Iris-setosa
|
| 15 |
+
5.8,4.0,1.2,0.2,Iris-setosa
|
| 16 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
| 17 |
+
5.4,3.9,1.3,0.4,Iris-setosa
|
| 18 |
+
5.1,3.5,1.4,0.3,Iris-setosa
|
| 19 |
+
5.7,3.8,1.7,0.3,Iris-setosa
|
| 20 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 21 |
+
5.4,3.4,1.7,0.2,Iris-setosa
|
| 22 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 23 |
+
4.6,3.6,1.0,0.2,Iris-setosa
|
| 24 |
+
5.1,3.3,1.7,0.5,Iris-setosa
|
| 25 |
+
4.8,3.4,1.9,0.2,Iris-setosa
|
| 26 |
+
5.0,3.0,1.6,0.2,Iris-setosa
|
| 27 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
| 28 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 29 |
+
5.2,3.4,1.4,0.2,Iris-setosa
|
| 30 |
+
4.7,3.2,1.6,0.2,Iris-setosa
|
| 31 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 32 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
| 33 |
+
5.2,4.1,1.5,0.1,Iris-setosa
|
| 34 |
+
5.5,4.2,1.4,0.2,Iris-setosa
|
| 35 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 36 |
+
5.0,3.2,1.2,0.2,Iris-setosa
|
| 37 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
| 38 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 39 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
| 40 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 41 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 42 |
+
4.5,2.3,1.3,0.3,Iris-setosa
|
| 43 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 44 |
+
5.0,3.5,1.6,0.6,Iris-setosa
|
| 45 |
+
5.1,3.8,1.9,0.4,Iris-setosa
|
| 46 |
+
4.8,3.0,1.4,0.3,Iris-setosa
|
| 47 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
| 48 |
+
4.6,3.2,1.4,0.2,Iris-setosa
|
| 49 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 50 |
+
5.0,3.3,1.4,0.2,Iris-setosa
|
| 51 |
+
7.0,3.2,4.7,1.4,Iris-versicolor
|
| 52 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
| 53 |
+
6.9,3.1,4.9,1.5,Iris-versicolor
|
| 54 |
+
5.5,2.3,4.0,1.3,Iris-versicolor
|
| 55 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 56 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
| 57 |
+
6.3,3.3,4.7,1.6,Iris-versicolor
|
| 58 |
+
4.9,2.4,3.3,1.0,Iris-versicolor
|
| 59 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
| 60 |
+
5.2,2.7,3.9,1.4,Iris-versicolor
|
| 61 |
+
5.0,2.0,3.5,1.0,Iris-versicolor
|
| 62 |
+
5.9,3.0,4.2,1.5,Iris-versicolor
|
| 63 |
+
6.0,2.2,4.0,1.0,Iris-versicolor
|
| 64 |
+
6.1,2.9,4.7,1.4,Iris-versicolor
|
| 65 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
| 66 |
+
6.7,3.1,4.4,1.4,Iris-versicolor
|
| 67 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 68 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
| 69 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
| 70 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 71 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
| 72 |
+
6.1,2.8,4.0,1.3,Iris-versicolor
|
| 73 |
+
6.3,2.5,4.9,1.5,Iris-versicolor
|
| 74 |
+
6.1,2.8,4.7,1.2,Iris-versicolor
|
| 75 |
+
6.4,2.9,4.3,1.3,Iris-versicolor
|
| 76 |
+
6.6,3.0,4.4,1.4,Iris-versicolor
|
| 77 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
| 78 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
| 79 |
+
6.0,2.9,4.5,1.5,Iris-versicolor
|
| 80 |
+
5.7,2.6,3.5,1.0,Iris-versicolor
|
| 81 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 82 |
+
5.5,2.4,3.7,1.0,Iris-versicolor
|
| 83 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 84 |
+
6.0,2.7,5.1,1.6,Iris-versicolor
|
| 85 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 86 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
| 87 |
+
6.7,3.1,4.7,1.5,Iris-versicolor
|
| 88 |
+
6.3,2.3,4.4,1.3,Iris-versicolor
|
| 89 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 90 |
+
5.5,2.5,4.0,1.3,Iris-versicolor
|
| 91 |
+
5.5,2.6,4.4,1.2,Iris-versicolor
|
| 92 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
| 93 |
+
5.8,2.6,4.0,1.2,Iris-versicolor
|
| 94 |
+
5.0,2.3,3.3,1.0,Iris-versicolor
|
| 95 |
+
5.6,2.7,4.2,1.3,Iris-versicolor
|
| 96 |
+
5.7,3.0,4.2,1.2,Iris-versicolor
|
| 97 |
+
5.7,2.9,4.2,1.3,Iris-versicolor
|
| 98 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
| 99 |
+
5.1,2.5,3.0,1.1,Iris-versicolor
|
| 100 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 101 |
+
6.3,3.3,6.0,2.5,Iris-virginica
|
| 102 |
+
5.8,2.7,5.1,1.9,Iris-virginica
|
| 103 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
| 104 |
+
6.3,2.9,5.6,1.8,Iris-virginica
|
| 105 |
+
6.5,3.0,5.8,2.2,Iris-virginica
|
| 106 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
| 107 |
+
4.9,2.5,4.5,1.7,Iris-virginica
|
| 108 |
+
7.3,2.9,6.3,1.8,Iris-virginica
|
| 109 |
+
6.7,2.5,5.8,1.8,Iris-virginica
|
| 110 |
+
7.2,3.6,6.1,2.5,Iris-virginica
|
| 111 |
+
6.5,3.2,5.1,2.0,Iris-virginica
|
| 112 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
| 113 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 114 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
| 115 |
+
5.8,2.8,5.1,2.4,Iris-virginica
|
| 116 |
+
6.4,3.2,5.3,2.3,Iris-virginica
|
| 117 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
| 118 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
| 119 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
| 120 |
+
6.0,2.2,5.0,1.5,Iris-virginica
|
| 121 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 122 |
+
5.6,2.8,4.9,2.0,Iris-virginica
|
| 123 |
+
7.7,2.8,6.7,2.0,Iris-virginica
|
| 124 |
+
6.3,2.7,4.9,1.8,Iris-virginica
|
| 125 |
+
6.7,3.3,5.7,2.1,Iris-virginica
|
| 126 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
| 127 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 128 |
+
6.1,3.0,4.9,1.8,Iris-virginica
|
| 129 |
+
6.4,2.8,5.6,2.1,Iris-virginica
|
| 130 |
+
7.2,3.0,5.8,1.6,Iris-virginica
|
| 131 |
+
7.4,2.8,6.1,1.9,Iris-virginica
|
| 132 |
+
7.9,3.8,6.4,2.0,Iris-virginica
|
| 133 |
+
6.4,2.8,5.6,2.2,Iris-virginica
|
| 134 |
+
6.3,2.8,5.1,1.5,Iris-virginica
|
| 135 |
+
6.1,2.6,5.6,1.4,Iris-virginica
|
| 136 |
+
7.7,3.0,6.1,2.3,Iris-virginica
|
| 137 |
+
6.3,3.4,5.6,2.4,Iris-virginica
|
| 138 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 139 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 140 |
+
6.9,3.1,5.4,2.1,Iris-virginica
|
| 141 |
+
6.7,3.1,5.6,2.4,Iris-virginica
|
| 142 |
+
6.9,3.1,5.1,2.3,Iris-virginica
|
| 143 |
+
5.8,2.7,5.1,1.9,Iris-virginica
|
| 144 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 145 |
+
6.7,3.3,5.7,2.5,Iris-virginica
|
| 146 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
| 147 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
| 148 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
| 149 |
+
6.2,3.4,5.4,2.3,Iris-virginica
|
| 150 |
+
5.9,3.0,5.1,1.8,Iris-virginica
|
| 151 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Please use python V 3.7 to be compatible with all packages
|
| 2 |
+
gpytorch==1.5.0
|
| 3 |
+
torch==1.9.0
|
| 4 |
+
scikit-learn==0.24.2
|
| 5 |
+
pyyaml==5.4.1
|
| 6 |
+
seaborn==0.11.2
|
| 7 |
+
xgboost==1.4.0
|
| 8 |
+
tqdm==4.62.1
|
| 9 |
+
numpy==1.21.2
|
| 10 |
+
openml==0.12.2
|
| 11 |
+
catboost==0.26.1
|
| 12 |
+
auto-sklearn==0.14.5
|
| 13 |
+
hyperopt==0.2.5
|
| 14 |
+
configspace==0.4.21
|
| 15 |
+
# autogluon==0.4.0
|
| 16 |
+
gradio==3.1.1
|