update
Browse files- rag.py +4 -4
- utility.py +67 -1
rag.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 2 |
from langchain.prompts import PromptTemplate
|
| 3 |
-
from utility import load_data, process_data, CustomRetriever
|
| 4 |
|
| 5 |
|
| 6 |
data1 = load_data('raw_data/sv')
|
|
@@ -137,9 +137,9 @@ ensemble_retriever3 = EnsembleRetriever(retrievers=[bm25_retriever3, retriever3]
|
|
| 137 |
|
| 138 |
#########################################################################################
|
| 139 |
|
| 140 |
-
custom_retriever1 =
|
| 141 |
-
custom_retriever2 =
|
| 142 |
-
custom_retriever3 =
|
| 143 |
|
| 144 |
multiq_chain1 = generate_queries | custom_retriever1
|
| 145 |
multiq_chain2 = generate_queries | custom_retriever2
|
|
|
|
| 1 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 2 |
from langchain.prompts import PromptTemplate
|
| 3 |
+
from utility import load_data, process_data, CustomRetriever, CustomRetriever1
|
| 4 |
|
| 5 |
|
| 6 |
data1 = load_data('raw_data/sv')
|
|
|
|
| 137 |
|
| 138 |
#########################################################################################
|
| 139 |
|
| 140 |
+
custom_retriever1 = CustomRetriever1(retriever = ensemble_retriever1)
|
| 141 |
+
custom_retriever2 = CustomRetriever1(retriever = ensemble_retriever2)
|
| 142 |
+
custom_retriever3 = CustomRetriever1(retriever = ensemble_retriever3)
|
| 143 |
|
| 144 |
multiq_chain1 = generate_queries | custom_retriever1
|
| 145 |
multiq_chain2 = generate_queries | custom_retriever2
|
utility.py
CHANGED
|
@@ -144,4 +144,70 @@ class CustomRetriever(BaseRetriever):
|
|
| 144 |
|
| 145 |
docs_top_10 = docs[0:10]
|
| 146 |
|
| 147 |
-
return docs_top_10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
docs_top_10 = docs[0:10]
|
| 146 |
|
| 147 |
+
return docs_top_10
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
import cohere
|
| 151 |
+
COHERE_API_KEY = 'axMzubIv9l3UTObYnIaHuZhE6tR3Nj8eGReXTws9'
|
| 152 |
+
|
| 153 |
+
class CustomRetriever1(BaseRetriever):
|
| 154 |
+
# vectorstores:Chroma
|
| 155 |
+
retriever:Any
|
| 156 |
+
|
| 157 |
+
def reciprocal_rank_fusion(self, results: list[list], k=60):
|
| 158 |
+
""" Reciprocal_rank_fusion that takes multiple lists of ranked documents
|
| 159 |
+
and an optional parameter k used in the RRF formula """
|
| 160 |
+
|
| 161 |
+
# Initialize a dictionary to hold fused scores for each unique document
|
| 162 |
+
fused_scores = {}
|
| 163 |
+
|
| 164 |
+
# Iterate through each list of ranked documents
|
| 165 |
+
for docs in results:
|
| 166 |
+
# Iterate through each document in the list, with its rank (position in the list)
|
| 167 |
+
for rank, doc in enumerate(docs):
|
| 168 |
+
# Convert the document to a string format to use as a key (assumes documents can be serialized to JSON)
|
| 169 |
+
doc_str = dumps(doc)
|
| 170 |
+
# If the document is not yet in the fused_scores dictionary, add it with an initial score of 0
|
| 171 |
+
if doc_str not in fused_scores:
|
| 172 |
+
fused_scores[doc_str] = 0
|
| 173 |
+
# Retrieve the current score of the document, if any
|
| 174 |
+
previous_score = fused_scores[doc_str]
|
| 175 |
+
# Update the score of the document using the RRF formula: 1 / (rank + k)
|
| 176 |
+
fused_scores[doc_str] += 1 / (rank + k)
|
| 177 |
+
|
| 178 |
+
# Sort the documents based on their fused scores in descending order to get the final reranked results
|
| 179 |
+
reranked_results = [
|
| 180 |
+
(loads(doc), score)
|
| 181 |
+
for doc, score in sorted(fused_scores.items(), key=lambda x: x[1], reverse=True) #[:10] #Top 10
|
| 182 |
+
]
|
| 183 |
+
|
| 184 |
+
# Return the reranked results as a list of tuples, each containing the document and its fused score
|
| 185 |
+
rr_list=[]
|
| 186 |
+
for doc in reranked_results:
|
| 187 |
+
rr_list.append(doc[0])
|
| 188 |
+
return rr_list[:30]
|
| 189 |
+
|
| 190 |
+
def _get_relevant_documents(
|
| 191 |
+
self, queries: list, *, run_manager: CallbackManagerForRetrieverRun
|
| 192 |
+
) -> List[Document]:
|
| 193 |
+
# Use your existing retriever to get the documents
|
| 194 |
+
documents=[]
|
| 195 |
+
for i in range(len(queries)):
|
| 196 |
+
document = self.retriever.get_relevant_documents(queries[i], callbacks=run_manager.get_child())
|
| 197 |
+
documents.append(document)
|
| 198 |
+
|
| 199 |
+
unique_documents = self.reciprocal_rank_fusion(documents)
|
| 200 |
+
|
| 201 |
+
# Get page content
|
| 202 |
+
docs_content = []
|
| 203 |
+
for i in range(len(unique_documents)):
|
| 204 |
+
docs_content.append(unique_documents[i].page_content)
|
| 205 |
+
|
| 206 |
+
co = cohere.Client(COHERE_API_KEY)
|
| 207 |
+
results = co.rerank(query=queries[0], documents=docs_content, top_n=10, model='rerank-multilingual-v3.0', return_documents=True)
|
| 208 |
+
|
| 209 |
+
reranked_indices = [result.index for result in results.results]
|
| 210 |
+
|
| 211 |
+
sorted_documents = [unique_documents[idx] for idx in reranked_indices]
|
| 212 |
+
|
| 213 |
+
return sorted_documents
|