Spaces:
Configuration error
Configuration error
| # -*- coding: utf-8 -*- | |
| """ | |
| @author:XuMing([email protected]) | |
| @description: | |
| pip install gradio | |
| pip install mdtex2html | |
| """ | |
| import argparse | |
| import os | |
| from threading import Thread | |
| import gradio as gr | |
| import mdtex2html | |
| import torch | |
| from peft import PeftModel | |
| from transformers import ( | |
| AutoModel, | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| BloomForCausalLM, | |
| BloomTokenizerFast, | |
| LlamaTokenizer, | |
| LlamaForCausalLM, | |
| GenerationConfig, | |
| TextIteratorStreamer, | |
| ) | |
| from supervised_finetuning import get_conv_template | |
| MODEL_CLASSES = { | |
| "bloom": (BloomForCausalLM, BloomTokenizerFast), | |
| "chatglm": (AutoModel, AutoTokenizer), | |
| "llama": (LlamaForCausalLM, LlamaTokenizer), | |
| "baichuan": (AutoModelForCausalLM, AutoTokenizer), | |
| "auto": (AutoModelForCausalLM, AutoTokenizer), | |
| } | |
| def stream_generate_answer( | |
| model, | |
| tokenizer, | |
| prompt, | |
| device, | |
| max_new_tokens=512, | |
| temperature=0.7, | |
| top_p=0.8, | |
| repetition_penalty=1.0, | |
| context_len=2048, | |
| ): | |
| streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=False) | |
| input_ids = tokenizer(prompt).input_ids | |
| max_src_len = context_len - max_new_tokens - 8 | |
| input_ids = input_ids[-max_src_len:] | |
| generation_kwargs = dict( | |
| input_ids=torch.as_tensor([input_ids]).to(device), | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| streamer=streamer, | |
| ) | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| yield from streamer | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--model_type', default=None, type=str, required=True) | |
| parser.add_argument('--base_model', default=None, type=str, required=True) | |
| parser.add_argument('--lora_model', default="", type=str, help="If None, perform inference on the base model") | |
| parser.add_argument('--tokenizer_path', default=None, type=str) | |
| parser.add_argument('--template_name', default="vicuna", type=str, | |
| help="Prompt template name, eg: alpaca, vicuna, baichuan-chat, chatglm2 etc.") | |
| parser.add_argument('--gpus', default="0", type=str) | |
| parser.add_argument('--only_cpu', action='store_true', help='only use CPU for inference') | |
| parser.add_argument('--resize_emb', action='store_true', help='Whether to resize model token embeddings') | |
| args = parser.parse_args() | |
| if args.only_cpu is True: | |
| args.gpus = "" | |
| os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus | |
| def postprocess(self, y): | |
| if y is None: | |
| return [] | |
| for i, (message, response) in enumerate(y): | |
| y[i] = ( | |
| None if message is None else mdtex2html.convert((message)), | |
| None if response is None else mdtex2html.convert(response), | |
| ) | |
| return y | |
| gr.Chatbot.postprocess = postprocess | |
| load_type = torch.float16 | |
| if torch.cuda.is_available(): | |
| device = torch.device(0) | |
| else: | |
| device = torch.device('cpu') | |
| if args.tokenizer_path is None: | |
| args.tokenizer_path = args.base_model | |
| model_class, tokenizer_class = MODEL_CLASSES[args.model_type] | |
| tokenizer = tokenizer_class.from_pretrained(args.tokenizer_path, trust_remote_code=True) | |
| base_model = model_class.from_pretrained( | |
| args.base_model, | |
| load_in_8bit=False, | |
| torch_dtype=load_type, | |
| low_cpu_mem_usage=True, | |
| device_map='auto', | |
| trust_remote_code=True, | |
| ) | |
| try: | |
| base_model.generation_config = GenerationConfig.from_pretrained(args.base_model, trust_remote_code=True) | |
| except OSError: | |
| print("Failed to load generation config, use default.") | |
| if args.resize_emb: | |
| model_vocab_size = base_model.get_input_embeddings().weight.size(0) | |
| tokenzier_vocab_size = len(tokenizer) | |
| print(f"Vocab of the base model: {model_vocab_size}") | |
| print(f"Vocab of the tokenizer: {tokenzier_vocab_size}") | |
| if model_vocab_size != tokenzier_vocab_size: | |
| print("Resize model embeddings to fit tokenizer") | |
| base_model.resize_token_embeddings(tokenzier_vocab_size) | |
| if args.lora_model: | |
| model = PeftModel.from_pretrained(base_model, args.lora_model, torch_dtype=load_type, device_map='auto') | |
| print("loaded lora model") | |
| else: | |
| model = base_model | |
| if device == torch.device('cpu'): | |
| model.float() | |
| model.eval() | |
| def reset_user_input(): | |
| return gr.update(value='') | |
| def reset_state(): | |
| return [], [] | |
| prompt_template = get_conv_template(args.template_name) | |
| stop_str = tokenizer.eos_token if tokenizer.eos_token else prompt_template.stop_str | |
| history = [] | |
| def predict( | |
| input, | |
| chatbot, | |
| history, | |
| max_new_tokens, | |
| temperature, | |
| top_p | |
| ): | |
| now_input = input | |
| chatbot.append((input, "")) | |
| history = history or [] | |
| history.append([now_input, '']) | |
| prompt = prompt_template.get_prompt(messages=history) | |
| response = "" | |
| for new_text in stream_generate_answer( | |
| model, | |
| tokenizer, | |
| prompt, | |
| device, | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| stop = False | |
| pos = new_text.find(stop_str) | |
| if pos != -1: | |
| new_text = new_text[:pos] | |
| stop = True | |
| response += new_text | |
| new_history = history + [(now_input, response)] | |
| chatbot[-1] = (now_input, response) | |
| yield chatbot, new_history | |
| if stop: | |
| break | |
| with gr.Blocks() as demo: | |
| gr.HTML("""<h1 align="center">MedicalGPT</h1>""") | |
| gr.Markdown( | |
| "> 为了促进医疗行业大模型的开放研究,本项目开源了MedicalGPT医疗大模型") | |
| chatbot = gr.Chatbot() | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| with gr.Column(scale=12): | |
| user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style( | |
| container=False) | |
| with gr.Column(min_width=32, scale=1): | |
| submitBtn = gr.Button("Submit", variant="primary") | |
| with gr.Column(scale=1): | |
| emptyBtn = gr.Button("Clear History") | |
| max_length = gr.Slider( | |
| 0, 4096, value=512, step=1.0, label="Maximum length", interactive=True) | |
| top_p = gr.Slider(0, 1, value=0.8, step=0.01, | |
| label="Top P", interactive=True) | |
| temperature = gr.Slider( | |
| 0, 1, value=0.7, step=0.01, label="Temperature", interactive=True) | |
| history = gr.State([]) | |
| submitBtn.click(predict, [user_input, chatbot, history, max_length, temperature, top_p], [chatbot, history], | |
| show_progress=True) | |
| submitBtn.click(reset_user_input, [], [user_input]) | |
| emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True) | |
| demo.queue().launch(share=False, inbrowser=True, server_name='0.0.0.0', server_port=8082) | |
| if __name__ == '__main__': | |
| main() | |