moazzamdev's picture
Update page1.py
5bf205b verified
import streamlit as st
from PyPDF2 import PdfReader
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.messages import SystemMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationSummaryMemory
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
import base64
import io
import time
from PIL import Image
import os
# Set your Google API key here
GOOGLE_API_KEY = os.environ.get("api_key")
def convert_to_base64(uploaded_file):
image = Image.open(uploaded_file)
buffered = io.BytesIO()
format = image.format if image.format in ["JPEG", "PNG"] else "PNG"
image.save(buffered, format=format)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def text():
st.title("Gemini Psychology Demo")
st.sidebar.title("Capabilities:")
st.sidebar.markdown("""
- **Text Queries**
- **Visual Queries**
- **PDF Support**
""")
st.markdown("""
<style>
.anim-typewriter {
animation: typewriter 3s steps(40) 1s 1 normal both,
blinkTextCursor 800ms steps(40) infinite normal;
overflow: hidden;
white-space: nowrap;
border-right: 3px solid;
font-family: serif;
font-size: 0.9em;
}
@keyframes typewriter {
from { width: 0; }
to { width: 100%; }
}
@keyframes blinkTextCursor {
from { border-right-color: rgba(255,255,255,0.75); }
to { border-right-color: transparent; }
}
.dot-pulse {
position: relative;
left: -9999px;
width: 10px;
height: 10px;
border-radius: 5px;
background-color: #9880ff;
color: #9880ff;
box-shadow: 9999px 0 0 -5px;
animation: dot-pulse 1.5s infinite linear;
animation-delay: 0.25s;
}
</style>
""", unsafe_allow_html=True)
if "messages" not in st.session_state:
st.session_state.messages = []
st.session_state.chat_history = StreamlitChatMessageHistory()
st.session_state.memory = ConversationSummaryMemory(
llm=ChatGoogleGenerativeAI(model="gemini-2.5-flash", google_api_key=GOOGLE_API_KEY),
memory_key="history",
chat_memory=st.session_state.chat_history
)
system_prompt = (
"You are a compassionate and emotionally intelligent AI assistant trained in cognitive behavioral therapy (CBT), "
"mindfulness, and active listening. You provide supportive, empathetic responses without making medical diagnoses. "
"Use a warm tone and guide users to explore their feelings, reframe thoughts, and reflect gently."
)
st.session_state.chat_history.add_message(SystemMessage(content=system_prompt))
llm = ChatGoogleGenerativeAI(
model="gemini-2.5-flash",
google_api_key=GOOGLE_API_KEY,
temperature=0.3,
streaming=True,
timeout=120,
max_retries=6
)
chat_container = st.container()
with chat_container:
if len(st.session_state.messages) == 0:
animated_text = '<div class="anim-typewriter">Hey 👋 Let’s dive into the mind together.</div>'
st.session_state.messages.append({"role": "assistant", "content": "Hey 👋 Let’s dive into the mind together."})
for message in st.session_state.messages:
if message["role"] == "user":
if message.get("image"):
st.chat_message("user", avatar="🧑").markdown(
f"""{message["content"]}<br><br>{'<img src="' + message["image"] + f'" width="50" style="margin-top: 10px; border-radius: 8px;">' if message["file_type"] == "application/pdf" else '<img src="' + message["image"] + f'" width="200" style="margin-top: 10px; border-radius: 8px;">'}<br> {f'<i style="font-size: 12px;">{message["file_name"]}</i>' if message["file_type"] == "application/pdf" else message["file_name"] if message["file_type"] else ''}""",
unsafe_allow_html=True
)
else:
st.chat_message("user", avatar="🧑").markdown(message["content"])
else:
st.chat_message("assistant", avatar="🤖").markdown(message["content"])
user_input = st.chat_input("Say something", accept_file=True, file_type=["png", "jpg", "jpeg", "pdf"])
if user_input:
file_type = None
file_name = ""
image_base64 = convert_to_base64("pdf_icon.png")
image_url = f"data:image/jpeg;base64,{image_base64}"
message_content = [{"type": "text", "text": user_input.text}]
files = user_input["files"]
if files:
file_type = files[0].type
if file_type in ["image/png", "image/jpg", "image/jpeg"]:
uploaded_file = user_input["files"][0]
image_base64 = convert_to_base64(uploaded_file)
image_url = f"data:image/jpeg;base64,{image_base64}"
message_content.append({"type": "image_url", "image_url": image_url})
text = ""
if file_type == "application/pdf":
uploaded_file = user_input["files"][0]
file_name = files[0].name
pdf_reader = PdfReader(uploaded_file)
for page in pdf_reader.pages:
text += page.extract_text()
prompt = "this is pdf data: \n" + text + "this is user asking about pdf:" + user_input.text
message_content = [{"type": "text", "text": prompt}]
message_content.append({"type": "text", "text": file_name})
with chat_container:
if file_type:
st.chat_message("user", avatar="🧑").markdown(
f"""
{user_input.text}
<br><br>
{'<img src="' + image_url + f'" width="50" style="margin-top: 10px; border-radius: 8px;">' if file_type == "application/pdf" else '<img src="' + image_url + f'" width="200" style="margin-top: 10px; border-radius: 8px;">' if file_type else ''}
<br>
{f'<i style="font-size: 12px;">{file_name}</i>' if file_type == "application/pdf" else file_name if file_type else ''}
""",
unsafe_allow_html=True
)
else:
st.chat_message("user", avatar="🧑").markdown(user_input.text)
st.session_state.messages.append({
"role": "user",
"content": user_input.text,
"image": image_url if user_input["files"] else "",
"file_name": file_name,
"file_type": file_type
})
user_message = HumanMessage(content=message_content)
st.session_state.chat_history.add_message(user_message)
# Ensure valid message history (SystemMessage only at index 0)
history = st.session_state.chat_history.messages
valid_history = [msg for msg in history if not isinstance(msg, SystemMessage)]
valid_history = [history[0]] + valid_history # Keep the first SystemMessage only
typing_container = st.empty()
def stream_generator(valid_history, user_message):
typing_container = st.empty()
typing_container.markdown('<p class="fade-text">Thinking...</p>', unsafe_allow_html=True)
st.markdown("""
<style>
@keyframes fade {
0% { opacity: 0.3; }
50% { opacity: 1; }
100% { opacity: 0.3; }
}
.fade-text {
font-size: 16px;
font-weight: bold;
color: #3498db;
animation: fade 1.5s infinite;
}
</style>
""", unsafe_allow_html=True)
response = llm.stream(valid_history + [user_message])
buffer = ""
first_chunk_received = False
PAUSE_AFTER = {".", "!", "?", ",", ";", ":"}
PAUSE_MULTIPLIER = 2.5
for chunk in response:
if not first_chunk_received:
typing_container.empty()
typing_container.markdown('<p class="fade-text">Typing...</p>', unsafe_allow_html=True)
first_chunk_received = True
content = buffer + chunk.content
words = content.split(' ')
if not content.endswith(' '):
buffer = words.pop()
else:
buffer = ""
for word in words:
yield word + ' '
base_delay = 0.03
last_char = word[-1] if word else ''
time.sleep(base_delay * PAUSE_MULTIPLIER if last_char in PAUSE_AFTER else base_delay)
if buffer:
yield buffer
time.sleep(0.03)
typing_container.empty()
with st.chat_message("assistant", avatar="🤖"):
full_response = st.write_stream(
stream_generator(valid_history, user_message)
)
typing_container.empty()
st.session_state.messages.append({
"role": "assistant",
"content": full_response
})
ai_message = AIMessage(content=full_response)
st.session_state.chat_history.add_message(ai_message)
st.session_state.memory.save_context(
{"input": user_message.content},
{"output": ai_message.content}
)