Spaces:
Running
Running
Update src/populate.py
Browse files- src/populate.py +2 -33
src/populate.py
CHANGED
|
@@ -97,45 +97,14 @@ def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 97 |
|
| 98 |
|
| 99 |
def get_leaderboard_df_mib_causalgraph(results_path: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
| 100 |
-
# print(f"results_path is {results_path}, requests_path is {requests_path}")
|
| 101 |
-
|
| 102 |
-
detailed_df, aggregated_df, intervention_averaged_df = get_raw_eval_results_mib_causalgraph(results_path)
|
| 103 |
|
| 104 |
-
# all_data_json = [v.to_dict() for v in raw_detailed_df]
|
| 105 |
-
# detailed_df = pd.DataFrame.from_records(all_data_json)
|
| 106 |
|
| 107 |
-
|
| 108 |
-
# aggregated_df = pd.DataFrame.from_records(all_data_json)
|
| 109 |
-
|
| 110 |
-
# all_data_json = [v.to_dict() for v in raw_intervention_averaged_df]
|
| 111 |
-
# intervention_averaged_df = pd.DataFrame.from_records(all_data_json)
|
| 112 |
-
|
| 113 |
-
# # Rename columns to match schema
|
| 114 |
-
# column_mapping = {}
|
| 115 |
-
# for col in detailed_df.columns:
|
| 116 |
-
# if col in ['eval_name', 'Method']:
|
| 117 |
-
# continue
|
| 118 |
-
# # Ensure consistent casing for the column names
|
| 119 |
-
# new_col = col.replace('Qwen2ForCausalLM', 'qwen2forcausallm') \
|
| 120 |
-
# .replace('Gemma2ForCausalLM', 'gemma2forcausallm') \
|
| 121 |
-
# .replace('LlamaForCausalLM', 'llamaforcausallm')
|
| 122 |
-
# column_mapping[col] = new_col
|
| 123 |
-
|
| 124 |
-
# detailed_df = detailed_df.rename(columns=column_mapping)
|
| 125 |
-
|
| 126 |
-
# # Create aggregated df
|
| 127 |
-
# aggregated_df = aggregate_methods(detailed_df)
|
| 128 |
-
|
| 129 |
-
# # Create intervention-averaged df
|
| 130 |
-
# intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
|
| 131 |
-
|
| 132 |
-
# print("Transformed columns:", detailed_df.columns.tolist())
|
| 133 |
|
| 134 |
-
print(f"Columns in detailed_df: {detailed_df.columns.tolist()}")
|
| 135 |
print(f"Columns in aggregated_df: {aggregated_df.columns.tolist()}")
|
| 136 |
print(f"Columns in intervention_averaged_df: {intervention_averaged_df.columns.tolist()}")
|
| 137 |
|
| 138 |
-
return
|
| 139 |
|
| 140 |
|
| 141 |
def get_evaluation_queue_df(save_path: str, cols: list, track: str) -> list[pd.DataFrame]:
|
|
|
|
| 97 |
|
| 98 |
|
| 99 |
def get_leaderboard_df_mib_causalgraph(results_path: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
|
|
|
|
|
|
|
|
|
| 100 |
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
aggregated_df, intervention_averaged_df = get_raw_eval_results_mib_causalgraph(results_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
|
|
|
| 104 |
print(f"Columns in aggregated_df: {aggregated_df.columns.tolist()}")
|
| 105 |
print(f"Columns in intervention_averaged_df: {intervention_averaged_df.columns.tolist()}")
|
| 106 |
|
| 107 |
+
return aggregated_df, intervention_averaged_df
|
| 108 |
|
| 109 |
|
| 110 |
def get_evaluation_queue_df(save_path: str, cols: list, track: str) -> list[pd.DataFrame]:
|