Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- Dockerfile +20 -13
- README.md +21 -16
- app.py +217 -0
- requirements.txt +6 -3
Dockerfile
CHANGED
|
@@ -1,20 +1,27 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
build-essential \
|
| 7 |
-
curl \
|
| 8 |
-
git \
|
| 9 |
-
&& rm -rf /var/lib/apt/lists/*
|
| 10 |
|
| 11 |
-
COPY requirements.txt
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
EXPOSE
|
| 17 |
|
| 18 |
-
HEALTHCHECK
|
|
|
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
| 1 |
+
# Hugging Face Spaces - Docker (Streamlit) for Sundew Diabetes Watch
|
| 2 |
+
FROM python:3.11-slim
|
| 3 |
|
| 4 |
+
# Avoid prompt
|
| 5 |
+
ENV PIP_NO_INPUT=1 PYTHONDONTWRITEBYTECODE=1 PYTHONUNBUFFERED=1 # Streamlit defaults for HF
|
| 6 |
+
PORT=7860
|
| 7 |
+
|
| 8 |
+
# System deps (build tools if needed by some wheel)
|
| 9 |
+
RUN apt-get update && apt-get install -y --no-install-recommends build-essential && rm -rf /var/lib/apt/lists/*
|
| 10 |
|
| 11 |
+
WORKDIR /app
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
COPY requirements.txt /app/requirements.txt
|
| 14 |
+
RUN pip install --upgrade pip && pip install -r /app/requirements.txt
|
| 15 |
|
| 16 |
+
# Copy app code
|
| 17 |
+
COPY app.py /app/app.py
|
| 18 |
+
COPY .streamlit/config.toml /app/.streamlit/config.toml
|
| 19 |
+
COPY README.md /app/README.md
|
| 20 |
|
| 21 |
+
EXPOSE 7860
|
| 22 |
|
| 23 |
+
# HEALTHCHECK so Spaces knows the app is up
|
| 24 |
+
HEALTHCHECK --interval=30s --timeout=5s --start-period=30s CMD python -c "import socket; s=socket.socket(); s.settimeout(3); s.connect(('127.0.0.1', 7860)); s.close()" || exit 1
|
| 25 |
|
| 26 |
+
# Streamlit entrypoint
|
| 27 |
+
CMD ["streamlit", "run", "app.py", "--server.port=7860", "--server.address=0.0.0.0"]
|
README.md
CHANGED
|
@@ -1,19 +1,24 @@
|
|
| 1 |
-
|
| 2 |
-
title: Sundew Diabetes Watch
|
| 3 |
-
emoji: 🚀
|
| 4 |
-
colorFrom: red
|
| 5 |
-
colorTo: red
|
| 6 |
-
sdk: docker
|
| 7 |
-
app_port: 8501
|
| 8 |
-
tags:
|
| 9 |
-
- streamlit
|
| 10 |
-
pinned: false
|
| 11 |
-
short_description: Diabetes Watch
|
| 12 |
-
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🌿 Sundew Diabetes Watch (Hugging Face Space: Docker + Streamlit)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
**Mission:** Low-cost, energy-aware diabetes risk monitoring for everyone — especially communities across Africa.
|
| 4 |
+
This app uses the *Sundew* selective-activation algorithm to run heavier models **only when needed**, saving compute and making
|
| 5 |
+
always-on monitoring practical on affordable hardware.
|
| 6 |
|
| 7 |
+
## How it works
|
| 8 |
+
- Upload a CSV with columns: `timestamp, glucose_mgdl, carbs_g, insulin_units, steps, hr` (optional extras allowed).
|
| 9 |
+
- A lightweight **risk score** runs on each event.
|
| 10 |
+
- **Sundew** decides when to open the gate and run a heavier model for near-term risk.
|
| 11 |
+
- You control the target activation rate to meet power/latency budgets.
|
| 12 |
|
| 13 |
+
> **Disclaimer:** Research prototype. Not medical advice.
|
| 14 |
+
|
| 15 |
+
## Developing locally
|
| 16 |
+
```bash
|
| 17 |
+
python -m venv .venv && source .venv/bin/activate # Windows: .venv\Scripts\activate
|
| 18 |
+
pip install -r requirements.txt
|
| 19 |
+
streamlit run app.py
|
| 20 |
+
```
|
| 21 |
+
|
| 22 |
+
## Deploying as a Hugging Face Space (Docker)
|
| 23 |
+
- Create a new **Docker** Space and push these files.
|
| 24 |
+
- The Dockerfile exposes port 7860 and launches `streamlit run app.py`.
|
app.py
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Optional
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import streamlit as st
|
| 8 |
+
|
| 9 |
+
# ---- Try Sundew; fallback if missing ----
|
| 10 |
+
try:
|
| 11 |
+
from sundew import SundewAlgorithm # provided by sundew-algorithms
|
| 12 |
+
_HAS_SUNDEW = True
|
| 13 |
+
except Exception:
|
| 14 |
+
SundewAlgorithm = None # type: ignore
|
| 15 |
+
_HAS_SUNDEW = False
|
| 16 |
+
|
| 17 |
+
st.set_page_config(page_title="Sundew Diabetes Watch", layout="wide")
|
| 18 |
+
st.title("🌿 Sundew Diabetes Watch")
|
| 19 |
+
st.caption("Energy-aware selective activation for diabetes monitoring — research demo (not medical advice).")
|
| 20 |
+
|
| 21 |
+
# ---------------- Sundew Gate wrapper ----------------
|
| 22 |
+
@dataclass
|
| 23 |
+
class SundewGate:
|
| 24 |
+
target_activation: float = 0.25
|
| 25 |
+
temperature: float = 0.08
|
| 26 |
+
mode: str = "tuned_v2"
|
| 27 |
+
|
| 28 |
+
def __post_init__(self):
|
| 29 |
+
if _HAS_SUNDEW and SundewAlgorithm is not None:
|
| 30 |
+
try:
|
| 31 |
+
self.sd = SundewAlgorithm(
|
| 32 |
+
target_activation=self.target_activation,
|
| 33 |
+
temperature=self.temperature,
|
| 34 |
+
mode=self.mode,
|
| 35 |
+
)
|
| 36 |
+
except TypeError:
|
| 37 |
+
self.sd = SundewAlgorithm()
|
| 38 |
+
else:
|
| 39 |
+
self.sd = None
|
| 40 |
+
# fallback state
|
| 41 |
+
self._tau = 0.5
|
| 42 |
+
self._ema = 0.0
|
| 43 |
+
self._alpha = 0.02
|
| 44 |
+
|
| 45 |
+
def decide(self, score: float) -> bool:
|
| 46 |
+
score = float(max(0.0, min(1.0, score)))
|
| 47 |
+
if self.sd is not None:
|
| 48 |
+
for name in ("decide", "step", "open"):
|
| 49 |
+
if hasattr(self.sd, name):
|
| 50 |
+
try:
|
| 51 |
+
return bool(getattr(self.sd, name)(score))
|
| 52 |
+
except Exception:
|
| 53 |
+
pass
|
| 54 |
+
# stochastic logistic fallback
|
| 55 |
+
p_open = 1 / (1 + math.exp(-(score - self._tau) / max(1e-6, self.temperature)))
|
| 56 |
+
fired = np.random.rand() < p_open
|
| 57 |
+
self._ema = (1 - self._alpha) * self._ema + self._alpha * (1.0 if fired else 0.0)
|
| 58 |
+
self._tau += 0.01 * (self.target_activation - self._ema)
|
| 59 |
+
self._tau = min(0.95, max(0.05, self._tau))
|
| 60 |
+
return fired
|
| 61 |
+
|
| 62 |
+
# ---------------- Lightweight risk scoring ----------------
|
| 63 |
+
def compute_lightweight_score(row: pd.Series) -> float:
|
| 64 |
+
g = float(row.get("glucose_mgdl", np.nan))
|
| 65 |
+
roc = float(row.get("roc_mgdl_min", 0.0))
|
| 66 |
+
insulin = float(row.get("insulin_units", 0.0))
|
| 67 |
+
carbs = float(row.get("carbs_g", 0.0))
|
| 68 |
+
hr = float(row.get("hr", 0.0))
|
| 69 |
+
|
| 70 |
+
low_gap = max(0.0, 80 - g)
|
| 71 |
+
high_gap = max(0.0, g - 140)
|
| 72 |
+
base = (low_gap + high_gap) / 120.0
|
| 73 |
+
|
| 74 |
+
roc_term = min(1.0, abs(roc) / 3.0)
|
| 75 |
+
insulin_term = min(1.0, insulin / 6.0) * (1.0 if roc < -0.5 else 0.3)
|
| 76 |
+
carbs_term = min(1.0, carbs / 50.0) * (1.0 if roc > 0.5 else 0.3)
|
| 77 |
+
activity_term = min(1.0, max(0.0, hr - 100) / 60.0) * (1.0 if insulin > 0.5 else 0.2)
|
| 78 |
+
|
| 79 |
+
score = base + 0.7 * roc_term + 0.5 * insulin_term + 0.4 * carbs_term + 0.3 * activity_term
|
| 80 |
+
return float(max(0.0, min(1.0, score)))
|
| 81 |
+
|
| 82 |
+
# ---------------- Heavy model (simple logreg) ----------------
|
| 83 |
+
from sklearn.linear_model import LogisticRegression
|
| 84 |
+
from sklearn.preprocessing import StandardScaler
|
| 85 |
+
from sklearn.pipeline import Pipeline
|
| 86 |
+
|
| 87 |
+
def make_heavy_model() -> Pipeline:
|
| 88 |
+
return Pipeline([("scaler", StandardScaler()), ("clf", LogisticRegression(max_iter=1000))])
|
| 89 |
+
|
| 90 |
+
def train_heavy_model(df: pd.DataFrame) -> Pipeline:
|
| 91 |
+
df = df.copy()
|
| 92 |
+
# predict 30-min ahead risk: hypo<70 or hyper>180
|
| 93 |
+
df["future_glucose"] = df["glucose_mgdl"].shift(-6) # assuming 5-min cadence
|
| 94 |
+
df["label"] = ((df["future_glucose"] < 70) | (df["future_glucose"] > 180)).astype(int)
|
| 95 |
+
df = df.dropna(subset=["label"]).copy()
|
| 96 |
+
|
| 97 |
+
X = df[["glucose_mgdl", "roc_mgdl_min", "insulin_units", "carbs_g", "hr"]].fillna(0.0).values
|
| 98 |
+
y = df["label"].values
|
| 99 |
+
if len(np.unique(y)) < 2:
|
| 100 |
+
# ensure fit works even with monotone data
|
| 101 |
+
y = np.array([0, 1] * (len(X) // 2 + 1))[: len(X)]
|
| 102 |
+
model = make_heavy_model()
|
| 103 |
+
model.fit(X, y)
|
| 104 |
+
return model
|
| 105 |
+
|
| 106 |
+
# ---------------- UI ----------------
|
| 107 |
+
left, right = st.columns([2, 1])
|
| 108 |
+
with left:
|
| 109 |
+
uploaded = st.file_uploader("Upload CGM CSV (timestamp, glucose_mgdl, carbs_g, insulin_units, steps, hr)", type=["csv"])
|
| 110 |
+
use_synth = st.checkbox("Use synthetic example if no file uploaded", value=True)
|
| 111 |
+
with right:
|
| 112 |
+
target_activation = st.slider("Target heavy-activation rate", 0.05, 0.9, 0.25, 0.01)
|
| 113 |
+
temperature = st.slider("Gate temperature", 0.02, 0.5, 0.08, 0.01)
|
| 114 |
+
mode = st.selectbox("Sundew mode", ["tuned_v2", "conservative", "aggressive", "auto_tuned"], index=0)
|
| 115 |
+
|
| 116 |
+
# ---------------- Load or synthesize data ----------------
|
| 117 |
+
if uploaded is not None:
|
| 118 |
+
df = pd.read_csv(uploaded)
|
| 119 |
+
else:
|
| 120 |
+
if not use_synth:
|
| 121 |
+
st.stop()
|
| 122 |
+
rng = np.random.default_rng(7)
|
| 123 |
+
n = 600
|
| 124 |
+
t0 = pd.Timestamp.utcnow().floor("min")
|
| 125 |
+
times = [t0 + pd.Timedelta(minutes=5 * i) for i in range(n)]
|
| 126 |
+
base = 120 + 25 * np.sin(np.linspace(0, 10 * np.pi, n))
|
| 127 |
+
noise = rng.normal(0, 10, n)
|
| 128 |
+
meals = (rng.random(n) < 0.04).astype(float) * rng.normal(45, 15, n).clip(0, 120)
|
| 129 |
+
insulin = (rng.random(n) < 0.03).astype(float) * rng.normal(4, 1.2, n).clip(0, 8)
|
| 130 |
+
steps = rng.integers(0, 150, size=n)
|
| 131 |
+
hr = 70 + (steps > 80) * rng.integers(30, 60, size=n)
|
| 132 |
+
glucose = base + noise + 0.3 * meals - 0.8 * insulin
|
| 133 |
+
df = pd.DataFrame({
|
| 134 |
+
"timestamp": times,
|
| 135 |
+
"glucose_mgdl": np.round(glucose, 1),
|
| 136 |
+
"carbs_g": np.round(meals, 1),
|
| 137 |
+
"insulin_units": np.round(insulin, 1),
|
| 138 |
+
"steps": steps,
|
| 139 |
+
"hr": hr,
|
| 140 |
+
})
|
| 141 |
+
|
| 142 |
+
# ---- Robust timestamp parsing (handles tz-aware) ----
|
| 143 |
+
from pandas.api.types import is_datetime64_any_dtype
|
| 144 |
+
if "timestamp" not in df.columns:
|
| 145 |
+
st.error("CSV must include a 'timestamp' column.")
|
| 146 |
+
st.stop()
|
| 147 |
+
|
| 148 |
+
if not is_datetime64_any_dtype(df["timestamp"]):
|
| 149 |
+
df["timestamp"] = pd.to_datetime(df["timestamp"], utc=True, errors="coerce")
|
| 150 |
+
|
| 151 |
+
# localize to UTC if naive
|
| 152 |
+
if getattr(df["timestamp"].dt, "tz", None) is None:
|
| 153 |
+
df["timestamp"] = df["timestamp"].dt.tz_localize("UTC")
|
| 154 |
+
|
| 155 |
+
df = df.sort_values("timestamp").reset_index(drop=True)
|
| 156 |
+
df["dt_min"] = df["timestamp"].diff().dt.total_seconds() / 60.0
|
| 157 |
+
df["glucose_prev"] = df["glucose_mgdl"].shift(1)
|
| 158 |
+
df["roc_mgdl_min"] = (df["glucose_mgdl"] - df["glucose_prev"]) / df["dt_min"]
|
| 159 |
+
df["roc_mgdl_min"] = df["roc_mgdl_min"].replace([np.inf, -np.inf], 0.0).fillna(0.0)
|
| 160 |
+
|
| 161 |
+
# Train model
|
| 162 |
+
model = train_heavy_model(df)
|
| 163 |
+
|
| 164 |
+
# Run stream
|
| 165 |
+
gate = SundewGate(target_activation=target_activation, temperature=temperature, mode=mode)
|
| 166 |
+
records = []
|
| 167 |
+
alerts = []
|
| 168 |
+
|
| 169 |
+
for _, row in df.iterrows():
|
| 170 |
+
score = compute_lightweight_score(row)
|
| 171 |
+
open_gate = gate.decide(score)
|
| 172 |
+
decision = "SKIP"
|
| 173 |
+
proba = None
|
| 174 |
+
if open_gate:
|
| 175 |
+
X = np.array([[row.get("glucose_mgdl", 0.0), row.get("roc_mgdl_min", 0.0),
|
| 176 |
+
row.get("insulin_units", 0.0), row.get("carbs_g", 0.0), row.get("hr", 0.0)]])
|
| 177 |
+
try:
|
| 178 |
+
proba = float(model.predict_proba(X)[0, 1])
|
| 179 |
+
except Exception:
|
| 180 |
+
proba = float(model.predict(X)[0])
|
| 181 |
+
decision = "RUN"
|
| 182 |
+
if proba >= 0.6:
|
| 183 |
+
alerts.append({
|
| 184 |
+
"timestamp": row["timestamp"],
|
| 185 |
+
"glucose": row["glucose_mgdl"],
|
| 186 |
+
"risk_proba": proba,
|
| 187 |
+
"note": "⚠ Elevated 30-min risk — please check CGM and plan carbs/insulin."
|
| 188 |
+
})
|
| 189 |
+
records.append({
|
| 190 |
+
"timestamp": row["timestamp"], "glucose": row["glucose_mgdl"], "roc": row["roc_mgdl_min"],
|
| 191 |
+
"score": score, "gate": decision, "risk_proba": proba
|
| 192 |
+
})
|
| 193 |
+
|
| 194 |
+
out = pd.DataFrame(records)
|
| 195 |
+
events = len(out)
|
| 196 |
+
activations = int((out["gate"] == "RUN").sum())
|
| 197 |
+
rate = activations / max(events, 1)
|
| 198 |
+
|
| 199 |
+
c1, c2, c3 = st.columns(3)
|
| 200 |
+
c1.metric("Events", f"{events}")
|
| 201 |
+
c2.metric("Heavy activations", f"{activations}")
|
| 202 |
+
c3.metric("Activation rate", f"{rate:.2%}")
|
| 203 |
+
|
| 204 |
+
st.line_chart(out.set_index("timestamp")["glucose"], height=220)
|
| 205 |
+
st.line_chart(out.set_index("timestamp")["score"], height=220)
|
| 206 |
+
|
| 207 |
+
st.subheader("Decisions (tail)")
|
| 208 |
+
st.dataframe(out.tail(50))
|
| 209 |
+
|
| 210 |
+
st.subheader("Alerts")
|
| 211 |
+
if alerts:
|
| 212 |
+
st.dataframe(pd.DataFrame(alerts))
|
| 213 |
+
else:
|
| 214 |
+
st.info("No high-risk alerts triggered in this window.")
|
| 215 |
+
|
| 216 |
+
st.caption("Engine: {}"
|
| 217 |
+
.format("sundew-algorithms active" if _HAS_SUNDEW else "fallback gate (install sundew-algorithms)"))
|
requirements.txt
CHANGED
|
@@ -1,3 +1,6 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.37.1
|
| 2 |
+
scikit-learn==1.5.1
|
| 3 |
+
numpy==1.26.4
|
| 4 |
+
pandas==2.2.2
|
| 5 |
+
# Sundew adaptive gating algorithm (PyPI)
|
| 6 |
+
sundew-algorithms
|