Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,146 +2,209 @@ import gradio as gr
|
|
| 2 |
from transformers import pipeline
|
| 3 |
import numpy as np
|
| 4 |
import os
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# --- Configuration ---
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# - "openai/whisper-small.en"
|
| 11 |
-
# - "openai/whisper-tiny" (multilingual, but tiny)
|
| 12 |
-
# - "openai/whisper-base" (multilingual, good balance)
|
| 13 |
-
# For Spaces, you might want a smaller model if you're on free tier CPU
|
| 14 |
-
MODEL_NAME = os.getenv("ASR_MODEL", "openai/whisper-base.en") # Default to base.en
|
| 15 |
-
DEVICE = "cuda" if os.getenv("USE_GPU", "false").lower() == "true" else "cpu" # Check for GPU availability
|
| 16 |
|
| 17 |
# --- Global Variables ---
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
|
|
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
if len(audio_data) < sample_rate * 0.2:
|
| 52 |
-
return history_state["full_text"], history_state
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
try:
|
| 55 |
-
#
|
| 56 |
-
#
|
| 57 |
-
#
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
# history_state["full_text"] += f"[Error: {e}] "
|
| 68 |
-
pass # Continue even if one chunk fails
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
gr.Markdown(
|
| 75 |
f"""
|
| 76 |
-
# ποΈ Live Speech-to-Text with Hugging Face Whisper
|
| 77 |
-
Speak into your microphone.
|
| 78 |
Using model: `{MODEL_NAME}` on device: `{DEVICE}`.
|
| 79 |
-
|
| 80 |
"""
|
| 81 |
)
|
| 82 |
|
| 83 |
-
if asr_pipeline is None:
|
| 84 |
-
gr.Markdown("## β οΈ Error:
|
| 85 |
|
| 86 |
-
# State to store the full transcription history
|
| 87 |
-
# Initialize with a dictionary structure
|
| 88 |
transcription_history = gr.State({"full_text": ""})
|
| 89 |
|
| 90 |
with gr.Row():
|
| 91 |
-
# Audio input: streaming from microphone
|
| 92 |
-
# 'type="numpy"' gives (sample_rate, data_array)
|
| 93 |
-
# 'streaming=True' enables continuous audio capture
|
| 94 |
audio_input = gr.Audio(
|
| 95 |
sources=["microphone"],
|
| 96 |
type="numpy",
|
| 97 |
streaming=True,
|
| 98 |
-
label="Speak Here (Streaming Active)",
|
| 99 |
-
# waveform_options=gr.WaveformOptions(show_controls=True) # Optional: show audio controls
|
| 100 |
)
|
| 101 |
-
|
| 102 |
-
# Text output for the live transcription
|
| 103 |
transcription_output = gr.Textbox(
|
| 104 |
-
label="Live Transcription",
|
| 105 |
-
lines=15,
|
| 106 |
-
interactive=False, # User shouldn't edit this directly
|
| 107 |
-
show_copy_button=True
|
| 108 |
)
|
| 109 |
|
| 110 |
-
#
|
| 111 |
-
#
|
| 112 |
-
#
|
| 113 |
-
# You can adjust 'every' (e.g., 0.5 for faster updates but more processing, 2 for less frequent).
|
| 114 |
audio_input.stream(
|
| 115 |
-
fn=
|
| 116 |
inputs=[audio_input, transcription_history],
|
| 117 |
outputs=[transcription_output, transcription_history],
|
| 118 |
-
every=
|
| 119 |
)
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
|
|
|
| 123 |
current_state["full_text"] = ""
|
| 124 |
-
print("Transcription cleared.")
|
| 125 |
-
return "", current_state
|
| 126 |
|
| 127 |
-
clear_button = gr.Button("Clear Transcription")
|
| 128 |
clear_button.click(
|
| 129 |
-
fn=
|
| 130 |
inputs=[transcription_history],
|
| 131 |
outputs=[transcription_output, transcription_history]
|
| 132 |
)
|
|
|
|
| 133 |
|
| 134 |
-
gr.Markdown(
|
| 135 |
-
"""
|
| 136 |
-
---
|
| 137 |
-
Built with [Gradio](https://gradio.app) and [Hugging Face Transformers](https://huggingface.co/transformers).
|
| 138 |
-
Model: [OpenAI Whisper](https://huggingface.co/models?search=openai/whisper)
|
| 139 |
-
"""
|
| 140 |
-
)
|
| 141 |
-
|
| 142 |
-
# To run locally (optional, usually not needed for HF Spaces if app.py is the entry point)
|
| 143 |
if __name__ == "__main__":
|
| 144 |
-
# You can set environment variables here for local testing if you want
|
| 145 |
# os.environ["ASR_MODEL"] = "openai/whisper-tiny.en"
|
| 146 |
# os.environ["USE_GPU"] = "False"
|
| 147 |
-
|
|
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
import numpy as np
|
| 4 |
import os
|
| 5 |
+
import torch
|
| 6 |
+
import torchaudio # For VAD
|
| 7 |
|
| 8 |
# --- Configuration ---
|
| 9 |
+
MODEL_NAME = os.getenv("ASR_MODEL", "openai/whisper-base.en")
|
| 10 |
+
DEVICE = "cuda" if torch.cuda.is_available() and os.getenv("USE_GPU", "false").lower() == "true" else "cpu"
|
| 11 |
+
print(f"Using device: {DEVICE}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# --- Global Variables ---
|
| 14 |
+
asr_pipeline = None
|
| 15 |
+
vad_model = None
|
| 16 |
+
vad_utils = None
|
| 17 |
+
audio_buffer = [] # To accumulate audio chunks
|
| 18 |
+
MAX_BUFFER_SECONDS = 10 # Max audio to buffer before forcing transcription
|
| 19 |
+
SILENCE_THRESHOLD_SECONDS = 1.5 # How long silence before processing speech segment
|
| 20 |
+
|
| 21 |
+
# --- Load Models ---
|
| 22 |
+
def load_models():
|
| 23 |
+
global asr_pipeline, vad_model, vad_utils
|
| 24 |
+
try:
|
| 25 |
+
print(f"Loading ASR model: {MODEL_NAME} on device: {DEVICE}")
|
| 26 |
+
asr_pipeline = pipeline(
|
| 27 |
+
task="automatic-speech-recognition",
|
| 28 |
+
model=MODEL_NAME,
|
| 29 |
+
device=DEVICE if DEVICE == "cuda" else -1
|
| 30 |
+
)
|
| 31 |
+
print("ASR model loaded successfully.")
|
| 32 |
+
|
| 33 |
+
print("Loading Silero VAD model...")
|
| 34 |
+
# Silero VAD model itself is small and runs on CPU efficiently
|
| 35 |
+
vad_model, vad_utils_tuple = torch.hub.load(repo_or_dir='snakers4/silero-vad',
|
| 36 |
+
model='silero_vad',
|
| 37 |
+
force_reload=False, # Set to True if you have issues
|
| 38 |
+
onnx=True) # Use ONNX for better CPU performance
|
| 39 |
+
(get_speech_timestamps,
|
| 40 |
+
save_audio,
|
| 41 |
+
read_audio,
|
| 42 |
+
VADIterator,
|
| 43 |
+
collect_chunks) = vad_utils_tuple
|
| 44 |
+
vad_utils = {
|
| 45 |
+
"get_speech_timestamps": get_speech_timestamps,
|
| 46 |
+
"VADIterator": VADIterator
|
| 47 |
+
}
|
| 48 |
+
print("Silero VAD model loaded successfully.")
|
| 49 |
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Error loading models: {e}")
|
| 52 |
+
if asr_pipeline is None: print("ASR pipeline failed to load.")
|
| 53 |
+
if vad_model is None: print("VAD model failed to load.")
|
| 54 |
+
|
| 55 |
+
load_models() # Load models at startup
|
| 56 |
|
| 57 |
+
# --- Core Transcription Logic with VAD ---
|
| 58 |
+
def transcribe_with_vad(new_chunk_audio, history_state):
|
| 59 |
+
global audio_buffer
|
| 60 |
|
| 61 |
+
if new_chunk_audio is None or asr_pipeline is None or vad_model is None:
|
| 62 |
+
return history_state.get("full_text", ""), history_state
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
sample_rate, audio_data = new_chunk_audio
|
| 65 |
+
audio_data_float32 = audio_data.astype(np.float32) / np.iinfo(audio_data.dtype).max
|
| 66 |
+
|
| 67 |
+
# Append to buffer
|
| 68 |
+
audio_buffer.append(audio_data_float32)
|
| 69 |
+
|
| 70 |
+
# Check buffer length; if too short, wait for more audio
|
| 71 |
+
current_buffer_duration = sum(len(chunk) / sample_rate for chunk in audio_buffer)
|
| 72 |
+
|
| 73 |
+
# If buffer is empty or too short, just return current state
|
| 74 |
+
if not audio_buffer or current_buffer_duration < 0.2: # Minimum duration to process
|
| 75 |
+
return history_state.get("full_text", ""), history_state
|
| 76 |
+
|
| 77 |
+
# Concatenate buffer for VAD processing
|
| 78 |
+
full_audio_np = np.concatenate(audio_buffer)
|
| 79 |
+
full_audio_tensor = torch.from_numpy(full_audio_np).float()
|
| 80 |
+
|
| 81 |
+
# Use VAD to find speech timestamps
|
| 82 |
+
# We're looking for the *end* of speech segments
|
| 83 |
+
# This is a simplified approach: we process if VAD detects no speech in the latest part
|
| 84 |
+
# or if the buffer gets too long.
|
| 85 |
try:
|
| 86 |
+
# For simplicity, let's analyze the last N seconds for silence
|
| 87 |
+
# A more robust VADIterator approach would be better for continuous streaming
|
| 88 |
+
# but is more complex to manage with Gradio's chunking.
|
| 89 |
+
|
| 90 |
+
# Let's try a simpler VAD: check if the last chunk contains speech
|
| 91 |
+
# For a more robust solution, use VADIterator or process the whole buffer
|
| 92 |
+
speech_timestamps = vad_utils["get_speech_timestamps"](
|
| 93 |
+
full_audio_tensor,
|
| 94 |
+
vad_model,
|
| 95 |
+
sampling_rate=sample_rate,
|
| 96 |
+
min_silence_duration_ms=500 # ms of silence to consider a break
|
| 97 |
+
)
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
# Heuristic: if speech_timestamps is empty for the latest chunk,
|
| 100 |
+
# OR if the buffer is long, OR if there's a significant pause
|
| 101 |
+
process_now = False
|
| 102 |
+
transcribed_text_segment = ""
|
| 103 |
+
|
| 104 |
+
if not speech_timestamps: # If no speech detected in the current combined buffer
|
| 105 |
+
if current_buffer_duration > SILENCE_THRESHOLD_SECONDS: # and we have enough audio to assume it's silence after speech
|
| 106 |
+
process_now = True
|
| 107 |
+
elif current_buffer_duration > MAX_BUFFER_SECONDS: # Buffer is too long, process it
|
| 108 |
+
process_now = True
|
| 109 |
+
else:
|
| 110 |
+
# If speech is detected, check if the end of the last speech segment is significantly before the end of the buffer
|
| 111 |
+
# This indicates a pause after speech.
|
| 112 |
+
if speech_timestamps:
|
| 113 |
+
last_speech_end_s = speech_timestamps[-1]['end'] / sample_rate
|
| 114 |
+
if current_buffer_duration - last_speech_end_s > SILENCE_THRESHOLD_SECONDS:
|
| 115 |
+
process_now = True
|
| 116 |
+
|
| 117 |
+
if process_now and full_audio_np.any(): # Ensure there's actual audio data
|
| 118 |
+
print(f"Processing {current_buffer_duration:.2f}s of buffered audio.")
|
| 119 |
+
# Transcribe the entire current buffer
|
| 120 |
+
transcription_result = asr_pipeline(
|
| 121 |
+
{"sampling_rate": sample_rate, "raw": full_audio_np.copy()}, # Send a copy
|
| 122 |
+
# You can add whisper specific args here if needed e.g. chunk_length_s for long-form
|
| 123 |
+
# generate_kwargs={"task": "transcribe", "language": "<|en|>"} # for multilingual models
|
| 124 |
+
)
|
| 125 |
+
new_text = transcription_result["text"].strip()
|
| 126 |
+
|
| 127 |
+
if new_text:
|
| 128 |
+
transcribed_text_segment = new_text + " "
|
| 129 |
+
history_state["full_text"] = history_state.get("full_text", "") + transcribed_text_segment
|
| 130 |
+
print(f"VAD processed: '{new_text}'")
|
| 131 |
+
|
| 132 |
+
audio_buffer = [] # Clear buffer after processing
|
| 133 |
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f"Error during VAD/transcription: {e}")
|
| 136 |
+
# Fallback: transcribe accumulated buffer if error, then clear
|
| 137 |
+
if audio_buffer:
|
| 138 |
+
try:
|
| 139 |
+
full_audio_fallback = np.concatenate(audio_buffer)
|
| 140 |
+
if full_audio_fallback.any():
|
| 141 |
+
transcription_result = asr_pipeline(
|
| 142 |
+
{"sampling_rate": sample_rate, "raw": full_audio_fallback.copy()}
|
| 143 |
+
)
|
| 144 |
+
new_text = transcription_result["text"].strip()
|
| 145 |
+
if new_text:
|
| 146 |
+
history_state["full_text"] = history_state.get("full_text", "") + new_text + " "
|
| 147 |
+
print(f"Fallback processed: '{new_text}'")
|
| 148 |
+
except Exception as fallback_e:
|
| 149 |
+
print(f"Error during fallback transcription: {fallback_e}")
|
| 150 |
+
audio_buffer = [] # Clear buffer
|
| 151 |
+
|
| 152 |
+
return history_state.get("full_text", ""), history_state
|
| 153 |
+
|
| 154 |
+
# --- Gradio UI (largely the same, just point to new function and manage state) ---
|
| 155 |
+
with gr.Blocks(title="Live Transcription with VAD") as demo:
|
| 156 |
gr.Markdown(
|
| 157 |
f"""
|
| 158 |
+
# ποΈ Live Speech-to-Text with VAD & Hugging Face Whisper
|
| 159 |
+
Speak into your microphone. Transcription will appear after speech segments.
|
| 160 |
Using model: `{MODEL_NAME}` on device: `{DEVICE}`.
|
| 161 |
+
VAD: Silero VAD
|
| 162 |
"""
|
| 163 |
)
|
| 164 |
|
| 165 |
+
if asr_pipeline is None or vad_model is None:
|
| 166 |
+
gr.Markdown("## β οΈ Error: Models Not Loaded. Check logs. β οΈ")
|
| 167 |
|
|
|
|
|
|
|
| 168 |
transcription_history = gr.State({"full_text": ""})
|
| 169 |
|
| 170 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
| 171 |
audio_input = gr.Audio(
|
| 172 |
sources=["microphone"],
|
| 173 |
type="numpy",
|
| 174 |
streaming=True,
|
| 175 |
+
label="Speak Here (Streaming Active with VAD)",
|
|
|
|
| 176 |
)
|
|
|
|
|
|
|
| 177 |
transcription_output = gr.Textbox(
|
| 178 |
+
label="Live Transcription", lines=15, interactive=False, show_copy_button=True
|
|
|
|
|
|
|
|
|
|
| 179 |
)
|
| 180 |
|
| 181 |
+
# Adjust 'every' based on how frequently you want to check the VAD buffer
|
| 182 |
+
# Smaller 'every' means more frequent checks, potentially more responsive VAD
|
| 183 |
+
# but also more frequent function calls.
|
|
|
|
| 184 |
audio_input.stream(
|
| 185 |
+
fn=transcribe_with_vad,
|
| 186 |
inputs=[audio_input, transcription_history],
|
| 187 |
outputs=[transcription_output, transcription_history],
|
| 188 |
+
every=0.5 # Check buffer and VAD every 0.5 seconds
|
| 189 |
)
|
| 190 |
|
| 191 |
+
def clear_transcription_state(current_state):
|
| 192 |
+
global audio_buffer
|
| 193 |
+
audio_buffer = [] # Also clear the audio buffer
|
| 194 |
current_state["full_text"] = ""
|
| 195 |
+
print("Transcription and audio buffer cleared.")
|
| 196 |
+
return "", current_state
|
| 197 |
|
| 198 |
+
clear_button = gr.Button("Clear Transcription & Buffer")
|
| 199 |
clear_button.click(
|
| 200 |
+
fn=clear_transcription_state,
|
| 201 |
inputs=[transcription_history],
|
| 202 |
outputs=[transcription_output, transcription_history]
|
| 203 |
)
|
| 204 |
+
gr.Markdown("---")
|
| 205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
if __name__ == "__main__":
|
|
|
|
| 207 |
# os.environ["ASR_MODEL"] = "openai/whisper-tiny.en"
|
| 208 |
# os.environ["USE_GPU"] = "False"
|
| 209 |
+
# load_models() # Ensure models are loaded if running locally
|
| 210 |
+
demo.queue().launch(debug=True, share=False)
|