irenewhll commited on
Commit
0c91bb9
Β·
verified Β·
1 Parent(s): 70f9734

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -0
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # pipeline 1: zero-shot to identify movie genres
5
+ genre_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
6
+
7
+ # pipeline 2: text2text-generation for movie descriptions
8
+ desc_pipeline = pipeline("text2text-generation", model="google/flan-t5-base")
9
+
10
+ # fine-tuned model (pipeline 3): local movie recommender model
11
+ rec_pipeline = pipeline("text-classification", model="model")
12
+
13
+ candidate_movies = [
14
+ "Inception", "The Matrix", "Interstellar", "Titanic", "The Dark Knight",
15
+ "The Godfather", "Pulp Fiction", "The Shawshank Redemption", "Forrest Gump", "Avengers"
16
+ ]
17
+
18
+ movie_genres = ["sci-fi", "drama", "romance", "action", "crime", "thriller", "adventure"]
19
+
20
+ def recommend_movies(input_movies):
21
+ if not input_movies.strip():
22
+ return "⚠️ Please enter at least one movie.", []
23
+
24
+ genres = genre_classifier(input_movies, candidate_labels=movie_genres, multi_label=True)
25
+ top_genres = genres["labels"][:2]
26
+
27
+ # Use fine-tuned model to recommend a movie label (simplified)
28
+ try:
29
+ rec_results = rec_pipeline(f"{input_movies} | genres: {', '.join(top_genres)}")
30
+ except Exception as e:
31
+ return f"❌ Recommendation model error: {e}", []
32
+
33
+ top_rec = rec_results[:5]
34
+ gallery = []
35
+ for item in top_rec:
36
+ title = item["label"].replace("LABEL_", "").strip()
37
+ score = item["score"]
38
+ try:
39
+ desc = desc_pipeline(f"Describe the movie {title} in one sentence.", max_length=40)[0]["generated_text"]
40
+ except:
41
+ desc = "No description available."
42
+ img_url = f"https://via.placeholder.com/200x300?text={title.replace(' ', '+')}"
43
+ label = f"🎞️ **{title}**\n\n{desc}\n\nConfidence: {score:.2f}"
44
+ gallery.append((img_url, label))
45
+
46
+ summary = f"🎬 Based on your input and detected genres ({', '.join(top_genres)}), we recommend:"
47
+ return summary, gallery
48
+
49
+ with gr.Blocks(title="πŸŽ₯ Movie Recommender") as demo:
50
+ gr.Markdown("# 🎬 Personalized Movie Recommendation\n_Using Hugging Face pipelines + fine-tuned model_")
51
+ with gr.Row():
52
+ input_box = gr.Textbox(label="Enter up to 3 movies you like", placeholder="e.g. Inception, Titanic")
53
+ btn = gr.Button("🎯 Recommend")
54
+ output_text = gr.Markdown()
55
+ output_gallery = gr.Gallery(columns=2)
56
+ btn.click(fn=recommend_movies, inputs=input_box, outputs=[output_text, output_gallery])
57
+
58
+ demo.launch()