File size: 26,426 Bytes
439e1dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
#!/usr/bin/env python3
"""
Data Preprocessing Pipeline for News Dashboard
Handles preprocessing of scraped content for translation, summarization, and other operations
"""

import re
import logging
from typing import List, Dict, Any, Optional
from datetime import datetime
import hashlib
import unicodedata
from scraper_common import scraping_cancelled

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class DataPreprocessor:
    """
    Data preprocessing pipeline for news dashboard content
    """
    
    def __init__(self):
        self.cleaned_data = []
        self.processing_stats = {
            'total_processed': 0,
            'successful_processing': 0,
            'failed_processing': 0,
            'content_issues': 0,
            'metadata_issues': 0
        }
    
    def preprocess_all_data(self, raw_data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Main preprocessing function that processes all scraped data
        
        Args:
            raw_data: List of dictionaries containing scraped content
            
        Returns:
            List of preprocessed dictionaries ready for downstream operations
        """
        logger.info(f"Starting preprocessing of {len(raw_data)} items")
        
        processed_data = []
        
        for item in raw_data:
            # Check for cancellation during preprocessing
            if scraping_cancelled():
                logger.warning("⚠️ Preprocessing cancelled by user")
                return processed_data
                
            try:
                processed_item = self._preprocess_single_item(item)
                if processed_item:
                    processed_data.append(processed_item)
                    self.processing_stats['successful_processing'] += 1
                else:
                    self.processing_stats['failed_processing'] += 1
                    
            except Exception as e:
                logger.error(f"Error processing item: {str(e)}")
                self.processing_stats['failed_processing'] += 1
                
            self.processing_stats['total_processed'] += 1
        
        logger.info(f"Preprocessing completed. Stats: {self.processing_stats}")
        return processed_data
    
    def _preprocess_single_item(self, item: Dict[str, Any]) -> Optional[Dict[str, Any]]:
        """
        Preprocess a single data item
        
        Args:
            item: Single dictionary containing scraped content
            
        Returns:
            Preprocessed dictionary or None if processing failed
        """
        try:
            # Debug: Log the raw item structure
            logger.info(f"πŸ” Raw item structure for preprocessing:")
            logger.info(f"  - Keys: {list(item.keys())}")
            logger.info(f"  - extracted_text length: {len(item.get('extracted_text', ''))}")
            logger.info(f"  - content length: {len(item.get('content', ''))}")
            
            # Create base processed item
            processed_content = self._clean_and_structure_content(item)
            processed_item = {
                'id': self._generate_unique_id(item),
                'source_metadata': self._extract_source_metadata(item),
                'content': processed_content,
                'metadata': self._enrich_metadata(processed_content),
                'quality_metrics': self._calculate_quality_metrics(processed_content),
                'processing_timestamp': datetime.now().isoformat(),
                'ready_for_operations': True
            }
            
            # Debug: Log the processed item structure
            logger.debug(f"πŸ” Processed item structure for {processed_item.get('id', 'unknown')}:")
            logger.debug(f"  - Keys: {list(processed_item.keys())}")
            logger.debug(f"  - Content keys: {list(processed_item.get('content', {}).keys())}")
            logger.debug(f"  - Metadata keys: {list(processed_item.get('metadata', {}).keys())}")
            
            # Validate the processed item
            if self._validate_processed_item(processed_item):
                return processed_item
            else:
                logger.warning(f"Validation failed for item: {processed_item.get('id', 'unknown')}")
                return None
                
        except Exception as e:
            logger.error(f"Error preprocessing item: {str(e)}")
            return None
    
    def _generate_unique_id(self, item: Dict[str, Any]) -> str:
        """
        Generate a unique identifier for the content item
        
        Args:
            item: Raw data item
            
        Returns:
            Unique identifier string
        """
        # Handle both text articles and document data
        url = item.get('url', '') or item.get('file_path', '')
        title = item.get('title', '')
        
        # Create a hash based on URL/file_path and title for uniqueness
        content_string = f"{url}{title}"
        return hashlib.md5(content_string.encode()).hexdigest()[:12]
    
    def _extract_source_metadata(self, item: Dict[str, Any]) -> Dict[str, Any]:
        """
        Extract and structure source metadata
        
        Args:
            item: Raw data item
            
        Returns:
            Dictionary containing source metadata
        """
        # Handle both text articles and document data
        content_text = item.get('content', '') or item.get('extracted_text', '')
        url = item.get('url', '') or item.get('file_path', '')
        
        # Preserve original source if it exists, otherwise identify from URL
        original_source = item.get('source', '')
        source_website = self._identify_source_website(url)
        
        # Use original source if available, otherwise use source_website
        # If source_website is 'unknown' and we have a URL, try to get source from URL using utils
        if not original_source and source_website == 'unknown' and url:
            try:
                from utils import get_source_from_url
                original_source = get_source_from_url(url)
            except:
                pass
        
        result = {
            'url': url,
            'title': item.get('title', ''),
            'date': item.get('date', ''),
            'category': item.get('category', ''),
            'source': original_source or self._map_source_website_to_name(source_website),
            'source_website': source_website,
            'content_type': self._identify_content_type(item),
            'file_type': item.get('file_type', ''),  # Preserve original file_type for CSV detection
            'language': self._detect_language(content_text),
            'pdf_path': item.get('pdf_path', '') or item.get('file_path', ''),
            'original_structure': {
                'has_pdf': bool(item.get('pdf_path') or item.get('file_path')),
                'content_length': len(content_text),
                'title_length': len(item.get('title', ''))
            }
        }
        
        logger.debug(f"πŸ” Extracted source metadata category: '{result.get('category', '')}'")
        logger.debug(f"πŸ” Preserved source: '{result.get('source', '')}'")
        return result
    
    def _clean_and_structure_content(self, item: Dict[str, Any]) -> Dict[str, Any]:
        """
        Clean and structure the content for downstream processing
        
        Args:
            item: Raw data item
            
        Returns:
            Dictionary containing cleaned and structured content
        """
        # Handle both text articles and document data
        raw_content = item.get('content', '') or item.get('extracted_text', '')
        
        # Debug: Log content extraction
        logger.info(f"πŸ” Content extraction debug:")
        logger.info(f"  - item.get('content', ''): '{item.get('content', '')}'")
        logger.info(f"  - item.get('extracted_text', ''): '{item.get('extracted_text', '')[:100]}...'")
        logger.info(f"  - raw_content length: {len(raw_content)}")
        
        # Clean the content
        cleaned_content = self._clean_text(raw_content)
        logger.info(f"  - cleaned_content length: {len(cleaned_content)}")
        
        # Extract structured information
        structured_content = {
            'raw_text': raw_content,
            'cleaned_text': cleaned_content,
            'text_blocks': self._split_into_blocks(cleaned_content),
            'sentences': self._split_into_sentences(cleaned_content),
            'summary_ready': self._prepare_for_summarization(cleaned_content),
            'translation_ready': self._prepare_for_translation(cleaned_content)
        }
        
        return structured_content
    
    def _enrich_metadata(self, processed_content: Dict[str, Any]) -> Dict[str, Any]:
        """
        Enrich metadata with additional information
        
        Args:
            processed_content: Processed content dictionary
            
        Returns:
            Dictionary containing enriched metadata
        """
        # Get the cleaned text from the processed content
        content = processed_content.get('cleaned_text', '')
        
        return {
            'word_count': len(content.split()),
            'character_count': len(content),
            'sentence_count': len(self._split_into_sentences(content)),
            'paragraph_count': len(self._split_into_blocks(content)),
            'reading_time_minutes': self._calculate_reading_time(content),
            'complexity_score': self._calculate_complexity_score(content)
        }
    
    def _calculate_quality_metrics(self, processed_content: Dict[str, Any]) -> Dict[str, Any]:
        """
        Calculate quality metrics for the content
        
        Args:
            processed_content: Processed content dictionary
            
        Returns:
            Dictionary containing quality metrics
        """
        content = processed_content.get('cleaned_text', '')
        title = processed_content.get('title', '')
        
        return {
            'content_quality': {
                'completeness_score': self._calculate_completeness_score(content),
                'coherence_score': self._calculate_coherence_score(content),
                'relevance_score': self._calculate_relevance_score(content, title),
                'readability_score': self._calculate_readability_score(content)
            },
            'data_quality': {
                'has_title': bool(title.strip()),
                'has_content': bool(content.strip()),
                'has_url': bool(processed_content.get('url', '').strip()),
                'content_length_adequate': len(content) > 100,
                'title_length_adequate': 10 < len(title) < 200
            },
            'processing_quality': {
                'successfully_cleaned': bool(self._clean_text(content)),
                'successfully_structured': bool(self._split_into_blocks(content))
            }
        }
    
    def _clean_text(self, text: str) -> str:
        """
        Clean and normalize text content
        
        Args:
            text: Raw text content
            
        Returns:
            Cleaned text content
        """
        if not text:
            return ""
        
        # Remove extra whitespace and normalize
        text = re.sub(r'\s+', ' ', text)
        text = text.strip()
        
        # Remove special characters but keep punctuation
        text = re.sub(r'[^\w\s\.\,\!\?\;\:\-\(\)]', '', text)
        
        # Normalize unicode
        text = unicodedata.normalize('NFKD', text)
        
        # Remove excessive punctuation
        text = re.sub(r'[\.]{2,}', '.', text)
        text = re.sub(r'[!]{2,}', '!', text)
        text = re.sub(r'[?]{2,}', '?', text)
        
        return text
    
    def _split_into_blocks(self, text: str) -> List[str]:
        """
        Split text into logical blocks (paragraphs)
        
        Args:
            text: Text content
            
        Returns:
            List of text blocks
        """
        if not text:
            return []
        
        # Split by double newlines or periods followed by space
        blocks = re.split(r'\n\s*\n|\.\s+(?=[A-Z])', text)
        return [block.strip() for block in blocks if block.strip()]
    
    def _split_into_sentences(self, text: str) -> List[str]:
        """
        Split text into sentences
        
        Args:
            text: Text content
            
        Returns:
            List of sentences
        """
        if not text:
            return []
        
        # Simple sentence splitting
        sentences = re.split(r'[.!?]+', text)
        return [sentence.strip() for sentence in sentences if sentence.strip()]
    
    def _prepare_for_summarization(self, text: str) -> Dict[str, Any]:
        """
        Prepare content for summarization
        
        Args:
            text: Text content
            
        Returns:
            Dictionary ready for summarization
        """
        blocks = self._split_into_blocks(text)
        sentences = self._split_into_sentences(text)
        
        return {
            'text': text,
            'blocks': blocks,
            'sentences': sentences,
            'block_count': len(blocks),
            'sentence_count': len(sentences),
            'avg_sentence_length': sum(len(s.split()) for s in sentences) / len(sentences) if sentences else 0,
            'summary_priority': self._calculate_summary_priority(text)
        }
    
    def _prepare_for_translation(self, text: str) -> Dict[str, Any]:
        """
        Prepare content for translation
        
        Args:
            text: Text content
            
        Returns:
            Dictionary ready for translation
        """
        return {
            'text': text,
            'language_detected': self._detect_language(text),
            'translation_blocks': self._split_into_blocks(text),
            'character_count': len(text),
            'word_count': len(text.split()),
            'translation_priority': self._calculate_translation_priority(text)
        }
    
    def _identify_source_website(self, url: str) -> str:
        """
        Identify the source website from URL
        
        Args:
            url: URL string
            
        Returns:
            Website identifier
        """
        if 'reliefweb.int' in url:
            return 'reliefweb'
        elif 'fscluster.org' in url:
            return 'fscluster'
        elif 'mopnd.govsomaliland.org' in url:
            return 'mopnd'
        elif 'nbs.gov.so' in url:
            return 'nbs'
        elif 'humdata.org' in url:
            return 'hdx'
        elif 'logcluster.org' in url:
            return 'logcluster'
        elif 'fsnau.org' in url:
            return 'fsnau'
        elif 'fews.net' in url:
            return 'fews'
        elif 'icpac.net' in url:
            if 'seasonal-forecast' in url.lower():
                return 'icpac_seasonal_forecast'
            else:
                return 'icpac'
        elif 'faoswalim.org' in url:
            return 'faoswalim'
        else:
            return 'unknown'
    
    def _map_source_website_to_name(self, source_website: str) -> str:
        """
        Map source website identifier to proper source name
        
        Args:
            source_website: Website identifier (lowercase)
            
        Returns:
            Proper source name
        """
        mapping = {
            'reliefweb': 'ReliefWeb',
            'fscluster': 'FS Cluster',
            'mopnd': 'MOPND Somaliland',
            'nbs': 'NBS Somalia',
            'hdx': 'HDX Humanitarian Data Exchange',
            'logcluster': 'LogCluster',
            'fsnau': 'FSNau - Food Security and Nutrition Analysis Unit',
            'fews': 'FEWS NET',
            'icpac': 'ICPAC',
            'icpac_seasonal_forecast': 'ICPAC - IGAD Climate Prediction and Applications Centre - Seasonal Forecast',
            'faoswalim': 'FAO SWALIM'
        }
        return mapping.get(source_website, 'Unknown')
    
    def _identify_content_type(self, item: Dict[str, Any]) -> str:
        """
        Identify the type of content
        
        Args:
            item: Raw data item
            
        Returns:
            Content type identifier
        """
        # Handle document data with file_type field
        if item.get('file_type'):
            file_type = item.get('file_type', '').lower()
            if 'pdf' in file_type:
                return 'pdf_document'
            elif 'doc' in file_type:
                return 'word_document'
            elif 'csv' in file_type:
                return 'csv_data'
            else:
                return f'{file_type}_document'
        
        # Handle legacy pdf_path field
        elif item.get('pdf_path') or item.get('file_path'):
            return 'pdf_document'
        
        # Handle URL-based content type detection
        url = item.get('url', '') or item.get('file_path', '')
        if 'article' in url.lower():
            return 'article'
        elif 'publication' in url.lower():
            return 'publication'
        elif 'journal' in url.lower():
            return 'journal'
        elif 'event' in url.lower():
            return 'event'
        else:
            return 'general'
    
    def _detect_language(self, text: str) -> str:
        """
        Detect language of the text (simplified)
        
        Args:
            text: Text content
            
        Returns:
            Language code
        """
        if not text:
            return 'unknown'
        
        # Simple language detection based on common words
        somali_words = ['somalia', 'somaliland', 'puntland', 'mogadishu', 'hargeisa']
        english_words = ['the', 'and', 'of', 'in', 'to', 'for', 'with', 'on', 'at']
        
        text_lower = text.lower()
        somali_count = sum(1 for word in somali_words if word in text_lower)
        english_count = sum(1 for word in english_words if word in text_lower)
        
        if somali_count > english_count:
            return 'so'
        elif english_count > somali_count:
            return 'en'
        else:
            return 'unknown'
    
    def _calculate_reading_time(self, text: str) -> float:
        """
        Calculate estimated reading time in minutes
        
        Args:
            text: Text content
            
        Returns:
            Reading time in minutes
        """
        word_count = len(text.split())
        return round(word_count / 200, 1)  # Average reading speed: 200 words per minute
    
    def _calculate_complexity_score(self, text: str) -> float:
        """
        Calculate text complexity score
        
        Args:
            text: Text content
            
        Returns:
            Complexity score (0-1)
        """
        if not text:
            return 0.0
        
        sentences = self._split_into_sentences(text)
        if not sentences:
            return 0.0
        
        avg_sentence_length = sum(len(s.split()) for s in sentences) / len(sentences)
        long_words = sum(1 for word in text.split() if len(word) > 6)
        total_words = len(text.split())
        
        complexity = (avg_sentence_length / 20) + (long_words / total_words if total_words > 0 else 0)
        return min(complexity, 1.0)
    
    def _calculate_completeness_score(self, content: str) -> float:
        """
        Calculate content completeness score
        
        Args:
            content: Text content
            
        Returns:
            Completeness score (0-1)
        """
        if not content:
            return 0.0
        
        score = 0.0
        
        # Length check
        if len(content) > 100:
            score += 0.3
        
        # Sentence count check
        sentences = self._split_into_sentences(content)
        if len(sentences) > 3:
            score += 0.3
        
        # Paragraph count check
        blocks = self._split_into_blocks(content)
        if len(blocks) > 1:
            score += 0.2
        
        # Basic content check
        if len(content.split()) > 10:
            score += 0.2
        
        return min(score, 1.0)
    
    def _calculate_coherence_score(self, content: str) -> float:
        """
        Calculate content coherence score
        
        Args:
            content: Text content
            
        Returns:
            Coherence score (0-1)
        """
        if not content:
            return 0.0
        
        # Simple coherence based on sentence structure
        sentences = self._split_into_sentences(content)
        if len(sentences) < 2:
            return 0.5
        
        # Check for proper sentence endings
        proper_endings = sum(1 for s in sentences if s.endswith(('.', '!', '?')))
        coherence = proper_endings / len(sentences)
        
        return min(coherence, 1.0)
    
    def _calculate_relevance_score(self, content: str, title: str) -> float:
        """
        Calculate content relevance score
        
        Args:
            content: Text content
            title: Title text
            
        Returns:
            Relevance score (0-1)
        """
        if not content or not title:
            return 0.0
        
        # Check if title words appear in content
        title_words = set(title.lower().split())
        content_words = set(content.lower().split())
        
        overlap = len(title_words.intersection(content_words))
        relevance = overlap / len(title_words) if title_words else 0.0
        
        return min(relevance, 1.0)
    
    def _calculate_readability_score(self, content: str) -> float:
        """
        Calculate readability score
        
        Args:
            content: Text content
            
        Returns:
            Readability score (0-1)
        """
        if not content:
            return 0.0
        
        sentences = self._split_into_sentences(content)
        words = content.split()
        
        if not sentences or not words:
            return 0.0
        
        # Simple readability based on sentence length and word length
        avg_sentence_length = len(words) / len(sentences)
        avg_word_length = sum(len(word) for word in words) / len(words)
        
        # Normalize to 0-1 scale
        readability = 1.0 - (avg_sentence_length / 50) - (avg_word_length / 10)
        
        return max(0.0, min(readability, 1.0))
    
    def _calculate_summary_priority(self, text: str) -> str:
        """
        Calculate summary priority
        
        Args:
            text: Text content
            
        Returns:
            Priority level
        """
        word_count = len(text.split())
        
        if word_count > 1000:
            return 'high'
        elif word_count > 500:
            return 'medium'
        else:
            return 'low'
    
    def _calculate_translation_priority(self, text: str) -> str:
        """
        Calculate translation priority
        
        Args:
            text: Text content
            
        Returns:
            Priority level
        """
        # Check for important keywords
        important_keywords = ['emergency', 'crisis', 'disaster', 'flood', 'drought', 'food', 'security']
        text_lower = text.lower()
        
        if any(keyword in text_lower for keyword in important_keywords):
            return 'high'
        elif len(text) > 500:
            return 'medium'
        else:
            return 'low'
    
    def _validate_processed_item(self, item: Dict[str, Any]) -> bool:
        """
        Validate processed item
        
        Args:
            item: Processed item
            
        Returns:
            True if valid, False otherwise
        """
        required_fields = ['id', 'source_metadata', 'content', 'metadata']
        
        # Debug: Check which fields are missing
        missing_fields = []
        for field in required_fields:
            if field not in item:
                missing_fields.append(field)
        
        if missing_fields:
            logger.warning(f"❌ Missing required fields: {missing_fields}")
            logger.warning(f"πŸ“‹ Available fields: {list(item.keys())}")
            return False
        
        # Check content quality
        content = item.get('content', {})
        cleaned_text = content.get('cleaned_text', '')
        if not cleaned_text:
            logger.warning(f"❌ No cleaned_text found in content")
            logger.warning(f"πŸ“‹ Content structure: {content}")
            return False
        
        # Check metadata quality
        metadata = item.get('metadata', {})
        word_count = metadata.get('word_count', 0)
        if word_count < 10:
            logger.warning(f"❌ Word count too low: {word_count} (minimum: 10)")
            logger.warning(f"πŸ“‹ Metadata: {metadata}")
            return False
        
        logger.debug(f"βœ… Validation passed for item {item.get('id', 'unknown')}")
        return True
    
    def get_processing_stats(self) -> Dict[str, Any]:
        """
        Get processing statistics
        
        Returns:
            Dictionary containing processing statistics
        """
        return self.processing_stats.copy()


def preprocess_scraped_data(raw_data: List[Dict[str, Any]], output_path: Optional[str] = None) -> List[Dict[str, Any]]:
    """
    Convenience function to preprocess scraped data
    
    Args:
        raw_data: List of raw scraped data
        output_path: Optional output file path (deprecated - not used)
        
    Returns:
        List of preprocessed data
    """
    preprocessor = DataPreprocessor()
    processed_data = preprocessor.preprocess_all_data(raw_data)
    
    return processed_data


if __name__ == "__main__":
    # Example usage
    sample_data = [
        {
            'title': 'Sample Article',
            'content': 'This is a sample article about water management in Somalia.',
            'url': 'https://example.com/article1',
            'date': '2024-01-01'
        }
    ]
    
    processed = preprocess_scraped_data(sample_data)
    print(f"Processed {len(processed)} items")