Spaces:
Runtime error
Runtime error
Update
Browse files
app.py
CHANGED
|
@@ -2,7 +2,6 @@
|
|
| 2 |
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
-
import functools
|
| 6 |
import os
|
| 7 |
import random
|
| 8 |
import shlex
|
|
@@ -65,26 +64,25 @@ def load_model(device: torch.device) -> nn.Module:
|
|
| 65 |
return model
|
| 66 |
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
|
| 72 |
@torch.inference_mode()
|
| 73 |
-
def generate_image(
|
| 74 |
-
seed: int, truncation_psi: float, randomize_noise: bool, model: nn.Module, device: torch.device
|
| 75 |
-
) -> np.ndarray:
|
| 76 |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
|
| 77 |
|
| 78 |
-
z = generate_z(model.style_dim, seed
|
|
|
|
| 79 |
out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise)
|
| 80 |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
| 81 |
return out[0].cpu().numpy()
|
| 82 |
|
| 83 |
|
| 84 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 85 |
-
model = load_model(device)
|
| 86 |
-
fn = functools.partial(generate_image, model=model, device=device)
|
| 87 |
-
|
| 88 |
with gr.Blocks(css="style.css") as demo:
|
| 89 |
gr.Markdown(DESCRIPTION)
|
| 90 |
with gr.Row():
|
|
@@ -93,7 +91,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 93 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 94 |
psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7)
|
| 95 |
randomize_noise = gr.Checkbox(label="Randomize Noise", value=False)
|
| 96 |
-
run_button = gr.Button(
|
| 97 |
with gr.Column():
|
| 98 |
result = gr.Image(label="Output")
|
| 99 |
gr.Markdown(ARTICLE)
|
|
@@ -105,9 +103,11 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 105 |
queue=False,
|
| 106 |
api_name=False,
|
| 107 |
).then(
|
| 108 |
-
fn=
|
| 109 |
inputs=[seed, psi, randomize_noise],
|
| 110 |
outputs=result,
|
| 111 |
api_name="run",
|
| 112 |
)
|
| 113 |
-
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
from __future__ import annotations
|
| 4 |
|
|
|
|
| 5 |
import os
|
| 6 |
import random
|
| 7 |
import shlex
|
|
|
|
| 64 |
return model
|
| 65 |
|
| 66 |
|
| 67 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 68 |
+
model = load_model(device)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def generate_z(z_dim: int, seed: int) -> torch.Tensor:
|
| 72 |
+
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).float()
|
| 73 |
|
| 74 |
|
| 75 |
@torch.inference_mode()
|
| 76 |
+
def generate_image(seed: int, truncation_psi: float, randomize_noise: bool) -> np.ndarray:
|
|
|
|
|
|
|
| 77 |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
|
| 78 |
|
| 79 |
+
z = generate_z(model.style_dim, seed)
|
| 80 |
+
z = z.to(device)
|
| 81 |
out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise)
|
| 82 |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
| 83 |
return out[0].cpu().numpy()
|
| 84 |
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
with gr.Blocks(css="style.css") as demo:
|
| 87 |
gr.Markdown(DESCRIPTION)
|
| 88 |
with gr.Row():
|
|
|
|
| 91 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 92 |
psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7)
|
| 93 |
randomize_noise = gr.Checkbox(label="Randomize Noise", value=False)
|
| 94 |
+
run_button = gr.Button()
|
| 95 |
with gr.Column():
|
| 96 |
result = gr.Image(label="Output")
|
| 97 |
gr.Markdown(ARTICLE)
|
|
|
|
| 103 |
queue=False,
|
| 104 |
api_name=False,
|
| 105 |
).then(
|
| 106 |
+
fn=generate_image,
|
| 107 |
inputs=[seed, psi, randomize_noise],
|
| 108 |
outputs=result,
|
| 109 |
api_name="run",
|
| 110 |
)
|
| 111 |
+
|
| 112 |
+
if __name__ == "__main__":
|
| 113 |
+
demo.queue(max_size=10).launch()
|