Spaces:
Runtime error
Runtime error
add dice
Browse files- dice_coefficient.py +222 -50
dice_coefficient.py
CHANGED
|
@@ -11,85 +11,257 @@
|
|
| 11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
-
"""
|
| 15 |
|
|
|
|
|
|
|
| 16 |
import evaluate
|
| 17 |
import datasets
|
| 18 |
|
| 19 |
|
| 20 |
-
# TODO: Add BibTeX citation
|
| 21 |
-
_CITATION = """\
|
| 22 |
-
@InProceedings{huggingface:module,
|
| 23 |
-
title = {A great new module},
|
| 24 |
-
authors={huggingface, Inc.},
|
| 25 |
-
year={2020}
|
| 26 |
-
}
|
| 27 |
-
"""
|
| 28 |
-
|
| 29 |
-
# TODO: Add description of the module here
|
| 30 |
_DESCRIPTION = """\
|
| 31 |
-
|
| 32 |
"""
|
| 33 |
|
| 34 |
|
| 35 |
-
# TODO: Add description of the arguments of the module here
|
| 36 |
_KWARGS_DESCRIPTION = """
|
| 37 |
-
Calculates how good are predictions given some references, using certain scores
|
| 38 |
Args:
|
| 39 |
-
predictions:
|
| 40 |
-
|
| 41 |
-
references:
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
Returns:
|
| 44 |
-
|
| 45 |
-
|
|
|
|
| 46 |
Examples:
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
>>>
|
| 51 |
-
>>>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
>>> print(results)
|
| 53 |
-
{'
|
| 54 |
"""
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 61 |
class DiceCoefficient(evaluate.Metric):
|
| 62 |
-
"""TODO: Short description of my evaluation module."""
|
| 63 |
-
|
| 64 |
def _info(self):
|
| 65 |
-
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
| 66 |
return evaluate.MetricInfo(
|
| 67 |
-
# This is the description that will appear on the modules page.
|
| 68 |
module_type="metric",
|
| 69 |
description=_DESCRIPTION,
|
| 70 |
citation=_CITATION,
|
| 71 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 72 |
-
# This defines the format of each prediction and reference
|
| 73 |
features=datasets.Features({
|
| 74 |
'predictions': datasets.Value('int64'),
|
| 75 |
'references': datasets.Value('int64'),
|
| 76 |
}),
|
| 77 |
-
|
| 78 |
-
homepage="http://module.homepage",
|
| 79 |
-
# Additional links to the codebase or references
|
| 80 |
-
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
| 81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
| 82 |
)
|
| 83 |
|
| 84 |
-
def
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
+
"""Dice Coefficient Metric."""
|
| 15 |
|
| 16 |
+
from typing import Dict, Optional
|
| 17 |
+
import numpy as np
|
| 18 |
import evaluate
|
| 19 |
import datasets
|
| 20 |
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
_DESCRIPTION = """\
|
| 23 |
+
Dice coefficient is 2 times the are of overlap divided by the total number of pixels in both segmentation maps.
|
| 24 |
"""
|
| 25 |
|
| 26 |
|
|
|
|
| 27 |
_KWARGS_DESCRIPTION = """
|
|
|
|
| 28 |
Args:
|
| 29 |
+
predictions (`List[ndarray]`):
|
| 30 |
+
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
|
| 31 |
+
references (`List[ndarray]`):
|
| 32 |
+
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
|
| 33 |
+
num_labels (`int`):
|
| 34 |
+
Number of classes (categories).
|
| 35 |
+
ignore_index (`int`):
|
| 36 |
+
Index that will be ignored during evaluation.
|
| 37 |
+
nan_to_num (`int`, *optional*):
|
| 38 |
+
If specified, NaN values will be replaced by the number defined by the user.
|
| 39 |
+
label_map (`dict`, *optional*):
|
| 40 |
+
If specified, dictionary mapping old label indices to new label indices.
|
| 41 |
+
reduce_labels (`bool`, *optional*, defaults to `False`):
|
| 42 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
|
| 43 |
+
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
|
| 44 |
Returns:
|
| 45 |
+
`Dict[str, float | ndarray]` comprising various elements:
|
| 46 |
+
- *dice_score* (`float`):
|
| 47 |
+
Dice Coefficient.
|
| 48 |
Examples:
|
| 49 |
+
>>> import numpy as np
|
| 50 |
+
>>> dice = evaluate.load("DiceCoefficient")
|
| 51 |
+
>>> # suppose one has 3 different segmentation maps predicted
|
| 52 |
+
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
|
| 53 |
+
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
|
| 54 |
+
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
|
| 55 |
+
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
|
| 56 |
+
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
|
| 57 |
+
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
|
| 58 |
+
>>> predicted = [predicted_1, predicted_2, predicted_3]
|
| 59 |
+
>>> ground_truth = [actual_1, actual_2, actual_3]
|
| 60 |
+
>>> results = dice.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
|
| 61 |
>>> print(results)
|
| 62 |
+
{'dice_score': 0.47750000}
|
| 63 |
"""
|
| 64 |
|
| 65 |
+
_CITATION = """\
|
| 66 |
+
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
|
| 67 |
+
author = {{MMSegmentation Contributors}},
|
| 68 |
+
license = {Apache-2.0},
|
| 69 |
+
month = {7},
|
| 70 |
+
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
|
| 71 |
+
url = {https://github.com/open-mmlab/mmsegmentation},
|
| 72 |
+
year = {2020}
|
| 73 |
+
}"""
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def intersect_and_union(
|
| 77 |
+
pred_label,
|
| 78 |
+
label,
|
| 79 |
+
num_labels,
|
| 80 |
+
ignore_index: bool,
|
| 81 |
+
label_map: Optional[Dict[int, int]] = None,
|
| 82 |
+
reduce_labels: bool = False,
|
| 83 |
+
):
|
| 84 |
+
"""Calculate intersection and Union.
|
| 85 |
+
Args:
|
| 86 |
+
pred_label (`ndarray`):
|
| 87 |
+
Prediction segmentation map of shape (height, width).
|
| 88 |
+
label (`ndarray`):
|
| 89 |
+
Ground truth segmentation map of shape (height, width).
|
| 90 |
+
num_labels (`int`):
|
| 91 |
+
Number of categories.
|
| 92 |
+
ignore_index (`int`):
|
| 93 |
+
Index that will be ignored during evaluation.
|
| 94 |
+
label_map (`dict`, *optional*):
|
| 95 |
+
Mapping old labels to new labels. The parameter will work only when label is str.
|
| 96 |
+
reduce_labels (`bool`, *optional*, defaults to `False`):
|
| 97 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
|
| 98 |
+
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
|
| 99 |
+
Returns:
|
| 100 |
+
area_intersect (`ndarray`):
|
| 101 |
+
The intersection of prediction and ground truth histogram on all classes.
|
| 102 |
+
area_union (`ndarray`):
|
| 103 |
+
The union of prediction and ground truth histogram on all classes.
|
| 104 |
+
area_pred_label (`ndarray`):
|
| 105 |
+
The prediction histogram on all classes.
|
| 106 |
+
area_label (`ndarray`):
|
| 107 |
+
The ground truth histogram on all classes.
|
| 108 |
+
"""
|
| 109 |
+
if label_map is not None:
|
| 110 |
+
for old_id, new_id in label_map.items():
|
| 111 |
+
label[label == old_id] = new_id
|
| 112 |
+
|
| 113 |
+
# turn into Numpy arrays
|
| 114 |
+
pred_label = np.array(pred_label)
|
| 115 |
+
label = np.array(label)
|
| 116 |
+
|
| 117 |
+
if reduce_labels:
|
| 118 |
+
label[label == 0] = 255
|
| 119 |
+
label = label - 1
|
| 120 |
+
label[label == 254] = 255
|
| 121 |
+
|
| 122 |
+
mask = label != ignore_index
|
| 123 |
+
mask = np.not_equal(label, ignore_index)
|
| 124 |
+
pred_label = pred_label[mask]
|
| 125 |
+
label = np.array(label)[mask]
|
| 126 |
+
|
| 127 |
+
intersect = pred_label[pred_label == label]
|
| 128 |
+
|
| 129 |
+
area_intersect = np.histogram(intersect, bins=num_labels, range=(0, num_labels - 1))[0]
|
| 130 |
+
area_pred_label = np.histogram(pred_label, bins=num_labels, range=(0, num_labels - 1))[0]
|
| 131 |
+
area_label = np.histogram(label, bins=num_labels, range=(0, num_labels - 1))[0]
|
| 132 |
|
| 133 |
+
area_union = area_pred_label + area_label - area_intersect
|
| 134 |
+
|
| 135 |
+
return area_intersect, area_union, area_pred_label, area_label
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def total_intersect_and_union(
|
| 139 |
+
results,
|
| 140 |
+
gt_seg_maps,
|
| 141 |
+
num_labels,
|
| 142 |
+
ignore_index: bool,
|
| 143 |
+
label_map: Optional[Dict[int, int]] = None,
|
| 144 |
+
reduce_labels: bool = False,
|
| 145 |
+
):
|
| 146 |
+
"""Calculate Total Intersection and Union, by calculating `intersect_and_union` for each (predicted, ground truth) pair.
|
| 147 |
+
Args:
|
| 148 |
+
results (`ndarray`):
|
| 149 |
+
List of prediction segmentation maps, each of shape (height, width).
|
| 150 |
+
gt_seg_maps (`ndarray`):
|
| 151 |
+
List of ground truth segmentation maps, each of shape (height, width).
|
| 152 |
+
num_labels (`int`):
|
| 153 |
+
Number of categories.
|
| 154 |
+
ignore_index (`int`):
|
| 155 |
+
Index that will be ignored during evaluation.
|
| 156 |
+
label_map (`dict`, *optional*):
|
| 157 |
+
Mapping old labels to new labels. The parameter will work only when label is str.
|
| 158 |
+
reduce_labels (`bool`, *optional*, defaults to `False`):
|
| 159 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
|
| 160 |
+
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
|
| 161 |
+
Returns:
|
| 162 |
+
total_area_intersect (`ndarray`):
|
| 163 |
+
The intersection of prediction and ground truth histogram on all classes.
|
| 164 |
+
total_area_union (`ndarray`):
|
| 165 |
+
The union of prediction and ground truth histogram on all classes.
|
| 166 |
+
total_area_pred_label (`ndarray`):
|
| 167 |
+
The prediction histogram on all classes.
|
| 168 |
+
total_area_label (`ndarray`):
|
| 169 |
+
The ground truth histogram on all classes.
|
| 170 |
+
"""
|
| 171 |
+
total_area_intersect = np.zeros((num_labels,), dtype=np.float64)
|
| 172 |
+
total_area_union = np.zeros((num_labels,), dtype=np.float64)
|
| 173 |
+
total_area_pred_label = np.zeros((num_labels,), dtype=np.float64)
|
| 174 |
+
total_area_label = np.zeros((num_labels,), dtype=np.float64)
|
| 175 |
+
for result, gt_seg_map in zip(results, gt_seg_maps):
|
| 176 |
+
area_intersect, area_union, area_pred_label, area_label = intersect_and_union(
|
| 177 |
+
result, gt_seg_map, num_labels, ignore_index, label_map, reduce_labels
|
| 178 |
+
)
|
| 179 |
+
total_area_intersect += area_intersect
|
| 180 |
+
total_area_union += area_union
|
| 181 |
+
total_area_pred_label += area_pred_label
|
| 182 |
+
total_area_label += area_label
|
| 183 |
+
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def dice_coef(
|
| 187 |
+
results,
|
| 188 |
+
gt_seg_maps,
|
| 189 |
+
num_labels,
|
| 190 |
+
ignore_index: bool,
|
| 191 |
+
nan_to_num: Optional[int] = None,
|
| 192 |
+
label_map: Optional[Dict[int, int]] = None,
|
| 193 |
+
reduce_labels: bool = False,
|
| 194 |
+
):
|
| 195 |
+
"""Calculate Mean Dice Coefficient (mDSC).
|
| 196 |
+
Args:
|
| 197 |
+
results (`ndarray`):
|
| 198 |
+
List of prediction segmentation maps, each of shape (height, width).
|
| 199 |
+
gt_seg_maps (`ndarray`):
|
| 200 |
+
List of ground truth segmentation maps, each of shape (height, width).
|
| 201 |
+
num_labels (`int`):
|
| 202 |
+
Number of categories.
|
| 203 |
+
ignore_index (`int`):
|
| 204 |
+
Index that will be ignored during evaluation.
|
| 205 |
+
nan_to_num (`int`, *optional*):
|
| 206 |
+
If specified, NaN values will be replaced by the number defined by the user.
|
| 207 |
+
label_map (`dict`, *optional*):
|
| 208 |
+
Mapping old labels to new labels. The parameter will work only when label is str.
|
| 209 |
+
reduce_labels (`bool`, *optional*, defaults to `False`):
|
| 210 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
|
| 211 |
+
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
|
| 212 |
+
Returns:
|
| 213 |
+
`Dict[str, float | ndarray]` comprising various elements:
|
| 214 |
+
- *mean_dsc* (`float`):
|
| 215 |
+
Mean Dice Coefficient (DSC averaged over all categories).
|
| 216 |
+
"""
|
| 217 |
+
total_area_intersect, _, total_area_pred_label, total_area_label = total_intersect_and_union(
|
| 218 |
+
results, gt_seg_maps, num_labels, ignore_index, label_map, reduce_labels
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
result = dict()
|
| 222 |
+
dice = 2 * total_area_intersect / (total_area_pred_label + total_area_label)
|
| 223 |
+
result["dice_score"] = np.nanmean(dice)
|
| 224 |
+
|
| 225 |
+
if nan_to_num is not None:
|
| 226 |
+
metrics = dict(
|
| 227 |
+
{metric: np.nan_to_num(metric_value, nan=nan_to_num) for metric, metric_value in metrics.items()}
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
return result
|
| 231 |
+
|
| 232 |
|
| 233 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 234 |
class DiceCoefficient(evaluate.Metric):
|
|
|
|
|
|
|
| 235 |
def _info(self):
|
|
|
|
| 236 |
return evaluate.MetricInfo(
|
|
|
|
| 237 |
module_type="metric",
|
| 238 |
description=_DESCRIPTION,
|
| 239 |
citation=_CITATION,
|
| 240 |
inputs_description=_KWARGS_DESCRIPTION,
|
|
|
|
| 241 |
features=datasets.Features({
|
| 242 |
'predictions': datasets.Value('int64'),
|
| 243 |
'references': datasets.Value('int64'),
|
| 244 |
}),
|
| 245 |
+
reference_urls=["https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/core/evaluation/metrics.py"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
)
|
| 247 |
|
| 248 |
+
def _compute(
|
| 249 |
+
self,
|
| 250 |
+
predictions,
|
| 251 |
+
references,
|
| 252 |
+
num_labels: int,
|
| 253 |
+
ignore_index: bool,
|
| 254 |
+
nan_to_num: Optional[int] = None,
|
| 255 |
+
label_map: Optional[Dict[int, int]] = None,
|
| 256 |
+
reduce_labels: bool = False,
|
| 257 |
+
):
|
| 258 |
+
dice = dice_coef(
|
| 259 |
+
results=predictions,
|
| 260 |
+
ground_truths=references,
|
| 261 |
+
num_labels=num_labels,
|
| 262 |
+
ignore_index=ignore_index,
|
| 263 |
+
nan_to_num=nan_to_num,
|
| 264 |
+
label_map=label_map,
|
| 265 |
+
reduce_labels=reduce_labels,
|
| 266 |
+
)
|
| 267 |
+
return dice
|