Spaces:
Runtime error
Runtime error
Vincent Claes
commited on
Commit
·
a861406
1
Parent(s):
abf0474
working code
Browse files- Makefile.txt +4 -0
- README.md +4 -0
- app.py +151 -0
- movies/bathroom.mp4 +0 -0
- movies/bedroom.mp4 +0 -0
- movies/dressing.mp4 +0 -0
- movies/home-office.mp4 +0 -0
- movies/kitchen.mp4 +0 -0
- movies/living-room.mp4 +0 -0
- movies/toilet.mp4 +0 -0
- poetry.lock +0 -0
- pyproject.toml +27 -0
- requirements.txt +5 -0
Makefile.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
install:
|
| 2 |
+
poetry install
|
| 3 |
+
poetry run pip list --format=freeze > requirements.txt
|
| 4 |
+
|
README.md
CHANGED
|
@@ -10,3 +10,7 @@ pinned: false
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 13 |
+
|
| 14 |
+
# Classify Rooms
|
| 15 |
+
|
| 16 |
+
##
|
app.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoProcessor, AutoModel
|
| 4 |
+
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import numpy as np
|
| 7 |
+
from decord import VideoReader
|
| 8 |
+
import imageio
|
| 9 |
+
|
| 10 |
+
FRAME_SAMPLING_RATE = 4
|
| 11 |
+
DEFAULT_MODEL = "microsoft/xclip-base-patch16-zero-shot"
|
| 12 |
+
|
| 13 |
+
processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
|
| 14 |
+
model = AutoModel.from_pretrained(DEFAULT_MODEL)
|
| 15 |
+
|
| 16 |
+
ROOMS = (
|
| 17 |
+
"bathroom,sauna,living room, bedroom,kitchen,toilet,hallway,dressing,attic,basement"
|
| 18 |
+
)
|
| 19 |
+
examples = [
|
| 20 |
+
[
|
| 21 |
+
"movies/bathroom.mp4",
|
| 22 |
+
ROOMS,
|
| 23 |
+
],
|
| 24 |
+
]
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def sample_frames_from_video_file(
|
| 28 |
+
file_path: str, num_frames: int = 16, frame_sampling_rate=1
|
| 29 |
+
):
|
| 30 |
+
videoreader = VideoReader(file_path)
|
| 31 |
+
videoreader.seek(0)
|
| 32 |
+
|
| 33 |
+
# sample frames
|
| 34 |
+
start_idx = 0
|
| 35 |
+
end_idx = num_frames * frame_sampling_rate - 1
|
| 36 |
+
indices = np.linspace(start_idx, end_idx, num=num_frames, dtype=np.int64)
|
| 37 |
+
frames = videoreader.get_batch(indices).asnumpy()
|
| 38 |
+
|
| 39 |
+
return frames
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def get_num_total_frames(file_path: str):
|
| 43 |
+
videoreader = VideoReader(file_path)
|
| 44 |
+
videoreader.seek(0)
|
| 45 |
+
return len(videoreader)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# def convert_frames_to_gif(frames, save_path: str = "frames.gif"):
|
| 49 |
+
# converted_frames = frames.astype(np.uint8)
|
| 50 |
+
# Path(save_path).parent.mkdir(parents=True, exist_ok=True)
|
| 51 |
+
# imageio.mimsave(save_path, converted_frames, fps=8)
|
| 52 |
+
# return save_path
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# def create_gif_from_video_file(
|
| 56 |
+
# file_path: str,
|
| 57 |
+
# num_frames: int = 16,
|
| 58 |
+
# frame_sampling_rate: int = 1,
|
| 59 |
+
# save_path: str = "frames.gif",
|
| 60 |
+
# ):
|
| 61 |
+
# frames = sample_frames_from_video_file(file_path, num_frames, frame_sampling_rate)
|
| 62 |
+
# return convert_frames_to_gif(frames, save_path)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def select_model(model_name):
|
| 66 |
+
global processor, model
|
| 67 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 68 |
+
model = AutoModel.from_pretrained(model_name)
|
| 69 |
+
|
| 70 |
+
def get_frame_sampling_rate(video_path, num_model_input_frames):
|
| 71 |
+
# rearrange sampling rate based on video length and model input length
|
| 72 |
+
num_total_frames = get_num_total_frames(video_path)
|
| 73 |
+
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
|
| 74 |
+
frame_sampling_rate = num_total_frames // num_model_input_frames
|
| 75 |
+
else:
|
| 76 |
+
frame_sampling_rate = FRAME_SAMPLING_RATE
|
| 77 |
+
return frame_sampling_rate
|
| 78 |
+
|
| 79 |
+
def predict(video_path, labels_text):
|
| 80 |
+
labels = labels_text.split(",")
|
| 81 |
+
num_model_input_frames = model.config.vision_config.num_frames
|
| 82 |
+
frame_sampling_rate = get_frame_sampling_rate(video_path, num_model_input_frames)
|
| 83 |
+
frames = sample_frames_from_video_file(
|
| 84 |
+
video_path, num_model_input_frames, frame_sampling_rate
|
| 85 |
+
)
|
| 86 |
+
# gif_path = convert_frames_to_gif(frames, save_path="video.gif")
|
| 87 |
+
|
| 88 |
+
inputs = processor(
|
| 89 |
+
text=labels, videos=list(frames), return_tensors="pt", padding=True
|
| 90 |
+
)
|
| 91 |
+
# forward pass
|
| 92 |
+
with torch.no_grad():
|
| 93 |
+
outputs = model(**inputs)
|
| 94 |
+
|
| 95 |
+
probs = outputs.logits_per_video[0].softmax(dim=-1).cpu().numpy()
|
| 96 |
+
label_to_prob = {}
|
| 97 |
+
for ind, label in enumerate(labels):
|
| 98 |
+
label_to_prob[label] = float(probs[ind])
|
| 99 |
+
|
| 100 |
+
# return label_to_prob, gif_path
|
| 101 |
+
return label_to_prob
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
app = gr.Blocks()
|
| 105 |
+
with app:
|
| 106 |
+
gr.Markdown(
|
| 107 |
+
"# **<p align='center'>Classification of Rooms</p>**"
|
| 108 |
+
)
|
| 109 |
+
gr.Markdown(
|
| 110 |
+
"### **<p align='center'>Upload a video of a room and provide a list of type of rooms the model should select from.</p>**"
|
| 111 |
+
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
with gr.Row():
|
| 115 |
+
with gr.Column():
|
| 116 |
+
video_file = gr.Video(label="Video File:", show_label=True)
|
| 117 |
+
local_video_labels_text = gr.Textbox(
|
| 118 |
+
label="Labels Text:", show_label=True
|
| 119 |
+
)
|
| 120 |
+
submit_button = gr.Button(value="Predict")
|
| 121 |
+
# with gr.Column():
|
| 122 |
+
# video_gif = gr.Image(
|
| 123 |
+
# label="Input Clip",
|
| 124 |
+
# show_label=True,
|
| 125 |
+
# )
|
| 126 |
+
with gr.Column():
|
| 127 |
+
predictions = gr.Label(label="Predictions:", show_label=True)
|
| 128 |
+
|
| 129 |
+
gr.Markdown("**Examples:**")
|
| 130 |
+
# gr.Examples(
|
| 131 |
+
# examples,
|
| 132 |
+
# [video_file,local_video_labels_text],
|
| 133 |
+
# [predictions, video_gif],
|
| 134 |
+
# fn=predict,
|
| 135 |
+
# cache_examples=True,
|
| 136 |
+
# )
|
| 137 |
+
|
| 138 |
+
submit_button.click(
|
| 139 |
+
predict,
|
| 140 |
+
inputs=[video_file, local_video_labels_text],
|
| 141 |
+
# outputs=[predictions, video_gif],
|
| 142 |
+
outputs=predictions,
|
| 143 |
+
)
|
| 144 |
+
# gr.Markdown(
|
| 145 |
+
# """
|
| 146 |
+
# \n Created by: Vincent Claes, <a href=\"https://www.meet-drift.ai/\">Drift</a>.
|
| 147 |
+
# \n Inspired by: <a href=\"https://huggingface.co/spaces/fcakyon/zero-shot-video-classification\">fcakyon</a>.
|
| 148 |
+
# """
|
| 149 |
+
# )
|
| 150 |
+
|
| 151 |
+
app.launch()
|
movies/bathroom.mp4
ADDED
|
Binary file (615 kB). View file
|
|
|
movies/bedroom.mp4
ADDED
|
Binary file (106 kB). View file
|
|
|
movies/dressing.mp4
ADDED
|
Binary file (251 kB). View file
|
|
|
movies/home-office.mp4
ADDED
|
Binary file (336 kB). View file
|
|
|
movies/kitchen.mp4
ADDED
|
Binary file (317 kB). View file
|
|
|
movies/living-room.mp4
ADDED
|
Binary file (376 kB). View file
|
|
|
movies/toilet.mp4
ADDED
|
Binary file (215 kB). View file
|
|
|
poetry.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pyproject.toml
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.poetry]
|
| 2 |
+
name = "classify-rooms"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = ""
|
| 5 |
+
authors = ["Vincent Claes <[email protected]>"]
|
| 6 |
+
readme = "README.md"
|
| 7 |
+
|
| 8 |
+
[tool.poetry.dependencies]
|
| 9 |
+
python = "^3.8"
|
| 10 |
+
gradio = "^3.12.0"
|
| 11 |
+
decord = "^0.6.0"
|
| 12 |
+
torch = "^1.13.1"
|
| 13 |
+
transformers = "^4.25.1"
|
| 14 |
+
imageio = "^2.24.0"
|
| 15 |
+
|
| 16 |
+
[tool.poetry.group.dev.dependencies]
|
| 17 |
+
black = "^22.12.0"
|
| 18 |
+
|
| 19 |
+
[build-system]
|
| 20 |
+
requires = ["poetry-core"]
|
| 21 |
+
build-backend = "poetry.core.masonry.api"
|
| 22 |
+
#gradio
|
| 23 |
+
#torch
|
| 24 |
+
#decord
|
| 25 |
+
#pytube
|
| 26 |
+
#imageio
|
| 27 |
+
#transformers @ git+https://github.com/huggingface/transformers.git@799cea64ac1029d66e9e58f18bc6f47892270723
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
decord
|
| 4 |
+
imageio
|
| 5 |
+
transformers @ git+https://github.com/huggingface/transformers.git@799cea64ac1029d66e9e58f18bc6f47892270723
|