Spaces:
Running
Running
Deprecated old demo solution [no ci]
Browse files- AeroPath/__init__.py +0 -0
- AeroPath/gui.py +0 -171
- AeroPath/inference.py +0 -103
- AeroPath/utils.py +0 -67
- app.py +0 -41
AeroPath/__init__.py
DELETED
|
File without changes
|
AeroPath/gui.py
DELETED
|
@@ -1,171 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
-
import gradio as gr
|
| 4 |
-
|
| 5 |
-
from .inference import run_model
|
| 6 |
-
from .utils import load_ct_to_numpy
|
| 7 |
-
from .utils import load_pred_volume_to_numpy
|
| 8 |
-
from .utils import nifti_to_glb
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
class WebUI:
|
| 12 |
-
def __init__(
|
| 13 |
-
self,
|
| 14 |
-
model_name: str = None,
|
| 15 |
-
cwd: str = "/home/user/app/",
|
| 16 |
-
share: int = 1,
|
| 17 |
-
):
|
| 18 |
-
# global states
|
| 19 |
-
self.images = []
|
| 20 |
-
self.pred_images = []
|
| 21 |
-
|
| 22 |
-
# @TODO: This should be dynamically set based on chosen volume size
|
| 23 |
-
self.nb_slider_items = 415
|
| 24 |
-
|
| 25 |
-
self.model_name = model_name
|
| 26 |
-
self.cwd = cwd
|
| 27 |
-
self.share = share
|
| 28 |
-
|
| 29 |
-
self.class_name = "airways" # default
|
| 30 |
-
self.class_names = {
|
| 31 |
-
"airways": "CT_Airways",
|
| 32 |
-
"lungs": "CT_Lungs",
|
| 33 |
-
}
|
| 34 |
-
|
| 35 |
-
self.result_names = {
|
| 36 |
-
"airways": "Airways",
|
| 37 |
-
"lungs": "Lungs",
|
| 38 |
-
}
|
| 39 |
-
|
| 40 |
-
# define widgets not to be rendered immediately, but later on
|
| 41 |
-
self.slider = gr.Slider(
|
| 42 |
-
1,
|
| 43 |
-
self.nb_slider_items,
|
| 44 |
-
value=1,
|
| 45 |
-
step=1,
|
| 46 |
-
label="Which 2D slice to show",
|
| 47 |
-
)
|
| 48 |
-
self.volume_renderer = gr.Model3D(
|
| 49 |
-
clear_color=[0.0, 0.0, 0.0, 0.0],
|
| 50 |
-
label="3D Model",
|
| 51 |
-
visible=True,
|
| 52 |
-
elem_id="model-3d",
|
| 53 |
-
).style(height=512)
|
| 54 |
-
|
| 55 |
-
def set_class_name(self, value):
|
| 56 |
-
print("Changed task to:", value)
|
| 57 |
-
self.class_name = value
|
| 58 |
-
|
| 59 |
-
def combine_ct_and_seg(self, img, pred):
|
| 60 |
-
return (img, [(pred, self.class_name)])
|
| 61 |
-
|
| 62 |
-
def upload_file(self, file):
|
| 63 |
-
return file.name
|
| 64 |
-
|
| 65 |
-
def process(self, mesh_file_name):
|
| 66 |
-
path = mesh_file_name.name
|
| 67 |
-
run_model(
|
| 68 |
-
path,
|
| 69 |
-
model_path=os.path.join(self.cwd, "resources/models/"),
|
| 70 |
-
task=self.class_names[self.class_name],
|
| 71 |
-
name=self.result_names[self.class_name],
|
| 72 |
-
)
|
| 73 |
-
nifti_to_glb("prediction.nii.gz")
|
| 74 |
-
|
| 75 |
-
self.images = load_ct_to_numpy(path)
|
| 76 |
-
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
|
| 77 |
-
return "./prediction.obj"
|
| 78 |
-
|
| 79 |
-
def get_img_pred_pair(self, k):
|
| 80 |
-
k = int(k) - 1
|
| 81 |
-
out = [gr.AnnotatedImage.update(visible=False)] * self.nb_slider_items
|
| 82 |
-
out[k] = gr.AnnotatedImage.update(
|
| 83 |
-
self.combine_ct_and_seg(self.images[k], self.pred_images[k]),
|
| 84 |
-
visible=True,
|
| 85 |
-
)
|
| 86 |
-
return out
|
| 87 |
-
|
| 88 |
-
def run(self):
|
| 89 |
-
css = """
|
| 90 |
-
#model-3d {
|
| 91 |
-
height: 512px;
|
| 92 |
-
}
|
| 93 |
-
#model-2d {
|
| 94 |
-
height: 512px;
|
| 95 |
-
margin: auto;
|
| 96 |
-
}
|
| 97 |
-
#upload {
|
| 98 |
-
height: 120px;
|
| 99 |
-
}
|
| 100 |
-
"""
|
| 101 |
-
with gr.Blocks(css=css) as demo:
|
| 102 |
-
with gr.Row():
|
| 103 |
-
file_output = gr.File(file_count="single", elem_id="upload")
|
| 104 |
-
file_output.upload(self.upload_file, file_output, file_output)
|
| 105 |
-
|
| 106 |
-
model_selector = gr.Dropdown(
|
| 107 |
-
list(self.class_names.keys()),
|
| 108 |
-
label="Task",
|
| 109 |
-
info="Which task to perform - one model for"
|
| 110 |
-
"airways and lungs extraction",
|
| 111 |
-
multiselect=False,
|
| 112 |
-
size="sm",
|
| 113 |
-
)
|
| 114 |
-
model_selector.input(
|
| 115 |
-
fn=lambda x: self.set_class_name(x),
|
| 116 |
-
inputs=model_selector,
|
| 117 |
-
outputs=None,
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
run_btn = gr.Button("Run analysis").style(
|
| 121 |
-
full_width=False, size="lg"
|
| 122 |
-
)
|
| 123 |
-
run_btn.click(
|
| 124 |
-
fn=lambda x: self.process(x),
|
| 125 |
-
inputs=file_output,
|
| 126 |
-
outputs=self.volume_renderer,
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
with gr.Row():
|
| 130 |
-
gr.Examples(
|
| 131 |
-
examples=[
|
| 132 |
-
os.path.join(self.cwd, "test_thorax_CT_ds.nii"),
|
| 133 |
-
os.path.join(self.cwd, "test_thorax_CT_ds.nii"),
|
| 134 |
-
],
|
| 135 |
-
inputs=file_output,
|
| 136 |
-
outputs=file_output,
|
| 137 |
-
fn=self.upload_file,
|
| 138 |
-
cache_examples=True,
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
with gr.Row():
|
| 142 |
-
with gr.Box():
|
| 143 |
-
with gr.Column():
|
| 144 |
-
image_boxes = []
|
| 145 |
-
for i in range(self.nb_slider_items):
|
| 146 |
-
visibility = True if i == 1 else False
|
| 147 |
-
t = gr.AnnotatedImage(
|
| 148 |
-
visible=visibility, elem_id="model-2d"
|
| 149 |
-
).style(
|
| 150 |
-
color_map={self.class_name: "#ffae00"},
|
| 151 |
-
height=512,
|
| 152 |
-
width=512,
|
| 153 |
-
)
|
| 154 |
-
image_boxes.append(t)
|
| 155 |
-
|
| 156 |
-
self.slider.input(
|
| 157 |
-
self.get_img_pred_pair, self.slider, image_boxes
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
self.slider.render()
|
| 161 |
-
|
| 162 |
-
with gr.Box():
|
| 163 |
-
self.volume_renderer.render()
|
| 164 |
-
|
| 165 |
-
# sharing app publicly -> share=True:
|
| 166 |
-
# https://gradio.app/sharing-your-app/
|
| 167 |
-
# inference times > 60 seconds -> need queue():
|
| 168 |
-
# https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
|
| 169 |
-
demo.queue().launch(
|
| 170 |
-
server_name="0.0.0.0", server_port=7860, share=self.share
|
| 171 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AeroPath/inference.py
DELETED
|
@@ -1,103 +0,0 @@
|
|
| 1 |
-
import configparser
|
| 2 |
-
import logging
|
| 3 |
-
import os
|
| 4 |
-
import shutil
|
| 5 |
-
import traceback
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
def run_model(
|
| 9 |
-
input_path: str,
|
| 10 |
-
model_path: str,
|
| 11 |
-
verbose: str = "info",
|
| 12 |
-
task: str = "CT_Airways",
|
| 13 |
-
name: str = "Airways",
|
| 14 |
-
):
|
| 15 |
-
logging.basicConfig()
|
| 16 |
-
logging.getLogger().setLevel(logging.WARNING)
|
| 17 |
-
|
| 18 |
-
if verbose == "debug":
|
| 19 |
-
logging.getLogger().setLevel(logging.DEBUG)
|
| 20 |
-
elif verbose == "info":
|
| 21 |
-
logging.getLogger().setLevel(logging.INFO)
|
| 22 |
-
elif verbose == "error":
|
| 23 |
-
logging.getLogger().setLevel(logging.ERROR)
|
| 24 |
-
else:
|
| 25 |
-
raise ValueError("Unsupported verbose value provided:", verbose)
|
| 26 |
-
|
| 27 |
-
# delete patient/result folder if they exist
|
| 28 |
-
if os.path.exists("./patient/"):
|
| 29 |
-
shutil.rmtree("./patient/")
|
| 30 |
-
if os.path.exists("./result/"):
|
| 31 |
-
shutil.rmtree("./result/")
|
| 32 |
-
|
| 33 |
-
patient_directory = ''
|
| 34 |
-
output_path = ''
|
| 35 |
-
try:
|
| 36 |
-
# setup temporary patient directory
|
| 37 |
-
filename = input_path.split("/")[-1]
|
| 38 |
-
splits = filename.split(".")
|
| 39 |
-
extension = ".".join(splits[1:])
|
| 40 |
-
patient_directory = "./patient/"
|
| 41 |
-
os.makedirs(patient_directory + "T0/", exist_ok=True)
|
| 42 |
-
shutil.copy(
|
| 43 |
-
input_path,
|
| 44 |
-
patient_directory + "T0/" + splits[0] + "-t1gd." + extension,
|
| 45 |
-
)
|
| 46 |
-
|
| 47 |
-
# define output directory to save results
|
| 48 |
-
output_path = "./result/prediction-" + splits[0] + "/"
|
| 49 |
-
os.makedirs(output_path, exist_ok=True)
|
| 50 |
-
|
| 51 |
-
# Setting up the configuration file
|
| 52 |
-
rads_config = configparser.ConfigParser()
|
| 53 |
-
rads_config.add_section("Default")
|
| 54 |
-
rads_config.set("Default", "task", "mediastinum_diagnosis")
|
| 55 |
-
rads_config.set("Default", "caller", "")
|
| 56 |
-
rads_config.add_section("System")
|
| 57 |
-
rads_config.set("System", "gpu_id", "-1")
|
| 58 |
-
rads_config.set("System", "input_folder", patient_directory)
|
| 59 |
-
rads_config.set("System", "output_folder", output_path)
|
| 60 |
-
rads_config.set("System", "model_folder", model_path)
|
| 61 |
-
rads_config.set(
|
| 62 |
-
"System",
|
| 63 |
-
"pipeline_filename",
|
| 64 |
-
os.path.join(model_path, task, "pipeline.json"),
|
| 65 |
-
)
|
| 66 |
-
rads_config.add_section("Runtime")
|
| 67 |
-
rads_config.set(
|
| 68 |
-
"Runtime", "reconstruction_method", "thresholding"
|
| 69 |
-
) # thresholding, probabilities
|
| 70 |
-
rads_config.set("Runtime", "reconstruction_order", "resample_first")
|
| 71 |
-
rads_config.set("Runtime", "use_preprocessed_data", "False")
|
| 72 |
-
|
| 73 |
-
with open("rads_config.ini", "w") as f:
|
| 74 |
-
rads_config.write(f)
|
| 75 |
-
|
| 76 |
-
# finally, run inference
|
| 77 |
-
from raidionicsrads.compute import run_rads
|
| 78 |
-
|
| 79 |
-
run_rads(config_filename="rads_config.ini")
|
| 80 |
-
|
| 81 |
-
# rename and move final result
|
| 82 |
-
os.rename(
|
| 83 |
-
"./result/prediction-"
|
| 84 |
-
+ splits[0]
|
| 85 |
-
+ "/T0/"
|
| 86 |
-
+ splits[0]
|
| 87 |
-
+ "-t1gd_annotation-"
|
| 88 |
-
+ name
|
| 89 |
-
+ ".nii.gz",
|
| 90 |
-
"./prediction.nii.gz",
|
| 91 |
-
)
|
| 92 |
-
# Clean-up
|
| 93 |
-
if os.path.exists(patient_directory):
|
| 94 |
-
shutil.rmtree(patient_directory)
|
| 95 |
-
if os.path.exists(output_path):
|
| 96 |
-
shutil.rmtree(output_path)
|
| 97 |
-
except Exception as e:
|
| 98 |
-
print(traceback.format_exc())
|
| 99 |
-
# Clean-up
|
| 100 |
-
if os.path.exists(patient_directory):
|
| 101 |
-
shutil.rmtree(patient_directory)
|
| 102 |
-
if os.path.exists(output_path):
|
| 103 |
-
shutil.rmtree(output_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AeroPath/utils.py
DELETED
|
@@ -1,67 +0,0 @@
|
|
| 1 |
-
import nibabel as nib
|
| 2 |
-
import numpy as np
|
| 3 |
-
from nibabel.processing import resample_to_output
|
| 4 |
-
from skimage.measure import marching_cubes
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
def load_ct_to_numpy(data_path):
|
| 8 |
-
if type(data_path) != str:
|
| 9 |
-
data_path = data_path.name
|
| 10 |
-
|
| 11 |
-
image = nib.load(data_path)
|
| 12 |
-
resampled = resample_to_output(image, None, order=0)
|
| 13 |
-
data = resampled.get_fdata()
|
| 14 |
-
|
| 15 |
-
data = np.rot90(data, k=1, axes=(0, 1))
|
| 16 |
-
|
| 17 |
-
data[data < -1024] = -1024
|
| 18 |
-
data[data > 1024] = 1024
|
| 19 |
-
|
| 20 |
-
data = data - np.amin(data)
|
| 21 |
-
data = data / np.amax(data) * 255
|
| 22 |
-
data = data.astype("uint8")
|
| 23 |
-
|
| 24 |
-
print(data.shape)
|
| 25 |
-
return [data[..., i] for i in range(data.shape[-1])]
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def load_pred_volume_to_numpy(data_path):
|
| 29 |
-
if type(data_path) != str:
|
| 30 |
-
data_path = data_path.name
|
| 31 |
-
|
| 32 |
-
image = nib.load(data_path)
|
| 33 |
-
resampled = resample_to_output(image, None, order=0)
|
| 34 |
-
data = resampled.get_fdata()
|
| 35 |
-
|
| 36 |
-
data = np.rot90(data, k=1, axes=(0, 1))
|
| 37 |
-
|
| 38 |
-
data[data > 0] = 1
|
| 39 |
-
data = data.astype("uint8")
|
| 40 |
-
|
| 41 |
-
print(data.shape)
|
| 42 |
-
return [data[..., i] for i in range(data.shape[-1])]
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def nifti_to_glb(path, output="prediction.obj"):
|
| 46 |
-
# load NIFTI into numpy array
|
| 47 |
-
image = nib.load(path)
|
| 48 |
-
resampled = resample_to_output(image, [1, 1, 1], order=1)
|
| 49 |
-
data = resampled.get_fdata().astype("uint8")
|
| 50 |
-
|
| 51 |
-
# extract surface
|
| 52 |
-
verts, faces, normals, values = marching_cubes(data, 0)
|
| 53 |
-
faces += 1
|
| 54 |
-
|
| 55 |
-
with open(output, "w") as thefile:
|
| 56 |
-
for item in verts:
|
| 57 |
-
thefile.write("v {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
| 58 |
-
|
| 59 |
-
for item in normals:
|
| 60 |
-
thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
| 61 |
-
|
| 62 |
-
for item in faces:
|
| 63 |
-
thefile.write(
|
| 64 |
-
"f {0}//{0} {1}//{1} {2}//{2}\n".format(
|
| 65 |
-
item[0], item[1], item[2]
|
| 66 |
-
)
|
| 67 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
DELETED
|
@@ -1,41 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from argparse import ArgumentParser
|
| 3 |
-
|
| 4 |
-
from AeroPath.gui import WebUI
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
def main():
|
| 8 |
-
parser = ArgumentParser()
|
| 9 |
-
parser.add_argument(
|
| 10 |
-
"--cwd",
|
| 11 |
-
type=str,
|
| 12 |
-
default="/home/user/app/",
|
| 13 |
-
help="Set current working directory (path to app.py).",
|
| 14 |
-
)
|
| 15 |
-
parser.add_argument(
|
| 16 |
-
"--share",
|
| 17 |
-
type=int,
|
| 18 |
-
default=1,
|
| 19 |
-
help="Whether to enable the app to be accessible online"
|
| 20 |
-
"-> setups a public link which requires internet access.",
|
| 21 |
-
)
|
| 22 |
-
args = parser.parse_args()
|
| 23 |
-
|
| 24 |
-
print("Current working directory:", args.cwd)
|
| 25 |
-
|
| 26 |
-
if not os.path.exists(args.cwd):
|
| 27 |
-
raise ValueError("Chosen 'cwd' is not a valid path!")
|
| 28 |
-
if args.share not in [0, 1]:
|
| 29 |
-
raise ValueError(
|
| 30 |
-
"The 'share' argument can only be set to 0 or 1, but was:",
|
| 31 |
-
args.share,
|
| 32 |
-
)
|
| 33 |
-
|
| 34 |
-
# initialize and run app
|
| 35 |
-
print("Launching demo...")
|
| 36 |
-
app = WebUI(cwd=args.cwd, share=args.share)
|
| 37 |
-
app.run()
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
if __name__ == "__main__":
|
| 41 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|