File size: 34,954 Bytes
399f3c6
 
 
 
 
371a40c
55a0955
94a7032
55a0955
371a40c
399f3c6
 
 
fa26a24
399f3c6
 
 
 
 
 
ef805fe
 
 
 
 
 
 
215d348
 
 
 
 
 
 
ef805fe
 
 
 
 
 
 
 
 
 
 
399f3c6
 
 
ef805fe
 
 
 
 
 
 
69629dd
 
 
 
 
 
 
 
399f3c6
a1ec589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399f3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef805fe
 
399f3c6
 
 
 
ef805fe
 
 
 
 
 
 
 
399f3c6
 
db5bfaa
 
 
 
399f3c6
db5bfaa
 
 
 
 
 
 
 
399f3c6
db5bfaa
 
 
 
 
 
 
 
 
399f3c6
ef805fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399f3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116d9c5
 
 
 
 
 
 
399f3c6
116d9c5
 
 
 
 
 
 
 
 
215d348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399f3c6
ef805fe
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ec589
ef805fe
 
 
 
 
 
 
 
 
116d9c5
399f3c6
69629dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399f3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d46508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef805fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399f3c6
ef805fe
 
399f3c6
ef805fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399f3c6
ef805fe
399f3c6
 
 
 
 
 
 
 
 
ef805fe
399f3c6
 
ef805fe
399f3c6
ef805fe
399f3c6
 
 
 
ef805fe
 
 
 
 
450704e
 
ef805fe
 
 
 
 
 
 
399f3c6
ef805fe
 
 
 
 
 
 
 
 
 
399f3c6
ef805fe
 
 
 
 
399f3c6
 
 
ef805fe
 
 
 
 
 
 
 
399f3c6
 
 
ef805fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399f3c6
ef805fe
 
399f3c6
 
 
 
 
 
 
116d9c5
 
 
 
 
 
 
 
 
 
401184c
116d9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399f3c6
116d9c5
 
 
 
 
 
 
 
 
 
69629dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
"""
文档处理和向量化模块
负责文档加载、文本分块、向量化和向量数据库初始化
"""

try:
    from langchain.text_splitter import RecursiveCharacterTextSplitter
except ImportError:
    from langchain_text_splitters import RecursiveCharacterTextSplitter

from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.retrievers import BM25Retriever

from config import (
    KNOWLEDGE_BASE_URLS,
    CHUNK_SIZE,
    CHUNK_OVERLAP,
    COLLECTION_NAME,
    EMBEDDING_MODEL,
    # 混合检索配置
    ENABLE_HYBRID_SEARCH,
    HYBRID_SEARCH_WEIGHTS,
    KEYWORD_SEARCH_K,
    BM25_K1,
    BM25_B,
    # 向量库配置
    VECTOR_STORE_TYPE,
    MILVUS_HOST,
    MILVUS_PORT,
    MILVUS_USER,
    MILVUS_PASSWORD,
    MILVUS_URI,
    # 查询扩展配置
    ENABLE_QUERY_EXPANSION,
    QUERY_EXPANSION_MODEL,
    QUERY_EXPANSION_PROMPT,
    MAX_EXPANDED_QUERIES,
    # 多模态配置
    ENABLE_MULTIMODAL,
    MULTIMODAL_IMAGE_MODEL,
    SUPPORTED_IMAGE_FORMATS,
    IMAGE_EMBEDDING_DIM,
    MULTIMODAL_WEIGHTS
)
from reranker import create_reranker

# 多模态支持相关导入
import base64
import io
from PIL import Image
import numpy as np
from typing import List, Dict, Any, Optional, Union

try:
    from langchain_core.documents import Document
except ImportError:
    try:
        from langchain_core.documents import Document
    except ImportError:
        from langchain.schema import Document


class CustomEnsembleRetriever:
    """自定义集成检索器,结合向量检索和BM25检索"""
    
    def __init__(self, retrievers, weights):
        self.retrievers = retrievers
        self.weights = weights
        
    def invoke(self, query):
        """执行检索并合并结果"""
        # 获取各检索器的结果
        all_results = []
        for i, retriever in enumerate(self.retrievers):
            results = retriever.invoke(query)
            for doc in results:
                # 添加检索器索引和权重信息
                doc.metadata["retriever_index"] = i
                doc.metadata["retriever_weight"] = self.weights[i]
                all_results.append(doc)
        
        # 根据权重排序并去重
        # 简单实现:先按检索器索引排序,再按权重排序
        all_results.sort(key=lambda x: (x.metadata["retriever_index"], -x.metadata["retriever_weight"]))
        
        # 去重(基于文档内容)
        unique_results = []
        seen_content = set()
        for doc in all_results:
            content = doc.page_content
            if content not in seen_content:
                seen_content.add(content)
                unique_results.append(doc)
                
        return unique_results


class DocumentProcessor:
    """文档处理器类,负责文档加载、处理和向量化"""
    
    def __init__(self):
        self.text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
            chunk_size=CHUNK_SIZE, 
            chunk_overlap=CHUNK_OVERLAP
        )
        
        # Try to initialize embeddings with error handling
        try:
            import torch
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
            print(f"✅ 检测到设备: {device}")
            if device == 'cuda':
                print(f"   GPU型号: {torch.cuda.get_device_name(0)}")
                print(f"   GPU内存: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f}GB")
            
            self.embeddings = HuggingFaceEmbeddings(
                model_name="sentence-transformers/all-MiniLM-L6-v2",  # 轻量级嵌入模型
                model_kwargs={'device': device},  # 自动选择GPU或CPU
                encode_kwargs={'normalize_embeddings': True}  # 标准化嵌入向量
            )
            print(f"✅ HuggingFace嵌入模型初始化成功 (设备: {device})")
        except Exception as e:
            print(f"⚠️ HuggingFace嵌入初始化失败: {e}")
            print("正在尝试备用嵌入方案...")
            # Fallback to OpenAI embeddings or other alternatives
            from langchain_community.embeddings import FakeEmbeddings
            self.embeddings = FakeEmbeddings(size=384)  # For testing purposes
            print("✅ 使用测试嵌入模型")
            
        self.vectorstore = None
        self.retriever = None
        self.bm25_retriever = None  # BM25检索器
        self.ensemble_retriever = None  # 集成检索器
        
        # 初始化重排器
        self.reranker = None
        self._setup_reranker()
        
        # 初始化多模态支持
        self.image_embeddings_model = None
        self._setup_multimodal()
        
        # 初始化查询扩展
        self.query_expansion_model = None
        self._setup_query_expansion()
    
    def _setup_reranker(self):
        """
        设置重排器
        使用 CrossEncoder 提升重排准确率
        """
        try:
            # 使用 CrossEncoder 重排器 (准确率最高) ⭐
            print("🔧 正在初始化 CrossEncoder 重排器...")
            self.reranker = create_reranker(
                'crossencoder',
                model_name='cross-encoder/ms-marco-MiniLM-L-6-v2',  # 轻量级模型
                max_length=512
            )
            print("✅ CrossEncoder 重排器初始化成功")
        except Exception as e:
            print(f"⚠️ CrossEncoder 初始化失败: {e}")
            print("🔄 尝试回退到混合重排器...")
            try:
                # 回退到混合重排器
                self.reranker = create_reranker('hybrid', self.embeddings)
                print("✅ 混合重排器初始化成功")
            except Exception as e2:
                print(f"⚠️ 重排器初始化完全失败: {e2}")
                print("⚠️ 将使用基础检索,不进行重排")
    
    def _setup_multimodal(self):
        """设置多模态支持"""
        if not ENABLE_MULTIMODAL:
            print("⚠️ 多模态支持已禁用")
            return
            
        try:
            print("🔧 正在初始化多模态支持...")
            from transformers import CLIPProcessor, CLIPModel
            import torch
            
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
            self.image_embeddings_model = CLIPModel.from_pretrained(MULTIMODAL_IMAGE_MODEL).to(device)
            self.image_processor = CLIPProcessor.from_pretrained(MULTIMODAL_IMAGE_MODEL)
            print(f"✅ 多模态支持初始化成功 (设备: {device})")
        except Exception as e:
            print(f"⚠️ 多模态支持初始化失败: {e}")
            print("⚠️ 将仅使用文本检索")
            self.image_embeddings_model = None
    
    def _setup_query_expansion(self):
        """设置查询扩展"""
        if not ENABLE_QUERY_EXPANSION:
            print("⚠️ 查询扩展已禁用")
            return
            
        try:
            print("🔧 正在初始化查询扩展...")
            from langchain_community.llms import Ollama
            
            self.query_expansion_model = Ollama(model=QUERY_EXPANSION_MODEL)
            print(f"✅ 查询扩展初始化成功 (模型: {QUERY_EXPANSION_MODEL})")
        except Exception as e:
            print(f"⚠️ 查询扩展初始化失败: {e}")
            print("⚠️ 将不使用查询扩展")
            self.query_expansion_model = None
    
    def load_documents(self, urls=None):
        """从URL加载文档"""
        if urls is None:
            urls = KNOWLEDGE_BASE_URLS
        
        print(f"正在加载 {len(urls)} 个URL的文档...")
        docs = [WebBaseLoader(url).load() for url in urls]
        docs_list = [item for sublist in docs for item in sublist]
        print(f"成功加载 {len(docs_list)} 个文档")
        return docs_list
    
    def split_documents(self, docs):
        """将文档分割成块"""
        print("正在分割文档...")
        doc_splits = self.text_splitter.split_documents(docs)
        print(f"文档分割完成,共 {len(doc_splits)} 个文档块")
        return doc_splits
    
    def create_vectorstore(self, doc_splits, persist_directory=None):
        """创建向量数据库
        
        Args:
            doc_splits: 文档块列表
            persist_directory: 持久化目录(可选)
        """
        print("正在创建向量数据库...")
        
        # 如果没有指定持久化目录,使用默认相对路径
        if persist_directory is None:
            import os
            current_dir = os.path.dirname(os.path.abspath(__file__))
            persist_directory = os.path.join(current_dir, 'chroma_db')
            os.makedirs(persist_directory, exist_ok=True)
            print(f"💾 使用默认持久化目录: {persist_directory}")
        
        if VECTOR_STORE_TYPE.lower() == "milvus":
            try:
                from langchain_community.vectorstores import Milvus
                
                # 准备连接参数
                connection_args = {}
                
                # 优先使用 URI (支持 Milvus Lite 本地文件 或 Zilliz Cloud)
                # 只要 MILVUS_URI 被设置(config中默认是 ./milvus_rag.db),且不是空字符串
                if MILVUS_URI and len(MILVUS_URI.strip()) > 0:
                    # 判断是本地文件还是云服务
                    is_local_file = not (MILVUS_URI.startswith("http://") or MILVUS_URI.startswith("https://"))
                    mode_name = "Lite (Local File)" if is_local_file else "Cloud (HTTP)"
                    
                    print(f"🔄 正在连接 Milvus {mode_name} ({MILVUS_URI})...")
                    connection_args["uri"] = MILVUS_URI
                    
                    # 如果是云服务,通常需要 token (使用 password 字段作为 token)
                    if not is_local_file and MILVUS_PASSWORD:
                         connection_args["token"] = MILVUS_PASSWORD
                else:
                    # 传统的 Host/Port 连接
                    print(f"🔄 正在连接 Milvus Server ({MILVUS_HOST}:{MILVUS_PORT})...")
                    connection_args = {
                        "host": MILVUS_HOST,
                        "port": MILVUS_PORT,
                        "user": MILVUS_USER,
                        "password": MILVUS_PASSWORD
                    }

                self.vectorstore = Milvus.from_documents(
                    documents=doc_splits,
                    embedding=self.embeddings,
                    collection_name=COLLECTION_NAME,
                    connection_args=connection_args,
                    drop_old=True  # 重新创建索引
                )
                print("✅ Milvus 向量数据库初始化成功")
            except ImportError:
                print("❌ 未安装 pymilvus,请运行: pip install pymilvus")
                raise
            except Exception as e:
                print(f"❌ Milvus 连接失败: {e}")
                print("⚠️ 回退到 Chroma 数据库...")
                # Fallback to Chroma
                self.vectorstore = Chroma.from_documents(
                    documents=doc_splits,
                    collection_name=COLLECTION_NAME,
                    embedding=self.embeddings,
                    persist_directory=persist_directory
                )
        else:
            # Default: Chroma
            self.vectorstore = Chroma.from_documents(
                documents=doc_splits,
                collection_name=COLLECTION_NAME,
                embedding=self.embeddings,
                persist_directory=persist_directory  # 添加持久化目录
            )
            
        self.retriever = self.vectorstore.as_retriever()
        
        # 如果启用混合检索,创建BM25检索器和集成检索器
        if ENABLE_HYBRID_SEARCH:
            print("正在初始化混合检索...")
            try:
                # 创建BM25检索器
                self.bm25_retriever = BM25Retriever.from_documents(
                    doc_splits, 
                    k=KEYWORD_SEARCH_K,
                    k1=BM25_K1,
                    b=BM25_B
                )
                
                # 创建集成检索器,结合向量检索和BM25检索
                self.ensemble_retriever = CustomEnsembleRetriever(
                    retrievers=[self.retriever, self.bm25_retriever],
                    weights=[HYBRID_SEARCH_WEIGHTS["vector"], HYBRID_SEARCH_WEIGHTS["keyword"]]
                )
                print("✅ 混合检索初始化成功")
            except Exception as e:
                print(f"⚠️ 混合检索初始化失败: {e}")
                print("⚠️ 将仅使用向量检索")
                self.ensemble_retriever = None
        
        print(f"✅ 向量数据库创建完成并持久化到: {persist_directory}")
        return self.vectorstore, self.retriever

    def get_all_documents_from_vectorstore(self, limit: Optional[int] = None) -> List[Document]:
        """从已持久化的向量数据库读取所有文档内容并构造 Document 列表"""
        if not self.vectorstore:
            return []
        try:
            data = self.vectorstore._collection.get(include=["documents", "metadatas"])  # type: ignore
            docs_raw = data.get("documents") or []
            metas = data.get("metadatas") or []
            docs: List[Document] = []
            for i, content in enumerate(docs_raw):
                if content:
                    meta = metas[i] if i < len(metas) else {}
                    docs.append(Document(page_content=content, metadata=meta))
            if limit:
                return docs[:limit]
            return docs
        except Exception as e:
            print(f"⚠️ 读取向量库文档失败: {e}")
            return []
    
    def setup_knowledge_base(self, urls=None, enable_graphrag=False):
        """设置完整的知识库(加载、分割、向量化)
        
        Args:
            urls: 文档URL列表
            enable_graphrag: 是否启用GraphRAG索引
            
        Returns:
            vectorstore, retriever, doc_splits
        """
        docs = self.load_documents(urls)
        doc_splits = self.split_documents(docs)
        vectorstore, retriever = self.create_vectorstore(doc_splits)
        
        # 返回doc_splits用于GraphRAG索引
        return vectorstore, retriever, doc_splits
    
    async def async_expand_query(self, query: str) -> List[str]:
        """异步扩展查询"""
        if not self.query_expansion_model:
            return [query]
            
        try:
            # 使用LLM生成扩展查询
            prompt = QUERY_EXPANSION_PROMPT.format(query=query)
            expanded_queries_text = await self.query_expansion_model.ainvoke(prompt)
            
            # 解析扩展查询
            expanded_queries = [query]  # 包含原始查询
            for line in expanded_queries_text.strip().split('\n'):
                line = line.strip()
                if line and not line.startswith('#') and not line.startswith('//'):
                    # 移除可能的编号前缀
                    if line[0].isdigit() and '.' in line[:5]:
                        line = line.split('.', 1)[1].strip()
                    expanded_queries.append(line)
            
            # 限制扩展查询数量
            return expanded_queries[:MAX_EXPANDED_QUERIES + 1]
        except Exception as e:
            print(f"⚠️ 异步查询扩展失败: {e}")
            return [query]

    async def async_hybrid_retrieve(self, query: str, top_k: int = 5) -> List:
        """异步混合检索"""
        if not ENABLE_HYBRID_SEARCH or not self.ensemble_retriever:
            return await self.retriever.ainvoke(query)
            
        try:
            results = await self.ensemble_retriever.ainvoke(query)
            return results[:top_k]
        except Exception as e:
            print(f"⚠️ 异步混合检索失败: {e}")
            print("回退到向量检索")
            return await self.retriever.ainvoke(query)

    async def async_enhanced_retrieve(self, query: str, top_k: int = 5, rerank_candidates: int = 20, 
                         image_paths: List[str] = None, use_query_expansion: bool = None):
        """异步增强检索"""
        import asyncio
        
        # 确定是否使用查询扩展
        if use_query_expansion is None:
            use_query_expansion = ENABLE_QUERY_EXPANSION
            
        # 如果启用查询扩展,生成扩展查询
        if use_query_expansion:
            expanded_queries = await self.async_expand_query(query)
            print(f"查询扩展: {len(expanded_queries)} 个查询")
        else:
            expanded_queries = [query]
            
        # 多模态检索(暂时保持同步,使用线程池)
        if image_paths and ENABLE_MULTIMODAL:
            loop = asyncio.get_running_loop()
            return await loop.run_in_executor(None, self.multimodal_retrieve, query, image_paths, top_k)
            
        # 混合检索或向量检索
        all_candidate_docs = []
        
        async def retrieve_single(q):
            if ENABLE_HYBRID_SEARCH:
                docs = await self.async_hybrid_retrieve(q, rerank_candidates)
            else:
                docs = await self.retriever.ainvoke(q)
                if len(docs) > rerank_candidates:
                    docs = docs[:rerank_candidates]
            return docs

        # 并发执行所有查询的检索
        results = await asyncio.gather(*[retrieve_single(q) for q in expanded_queries])
        
        for docs in results:
            all_candidate_docs.extend(docs)
            
        # 去重(基于文档内容)
        unique_docs = []
        seen_content = set()
        for doc in all_candidate_docs:
            content = doc.page_content
            if content not in seen_content:
                seen_content.add(content)
                unique_docs.append(doc)
                
        print(f"检索获得 {len(unique_docs)} 个候选文档")
        
        # 重排(如果重排器可用)
        # 注意:重排通常是计算密集型,建议放入线程池
        if self.reranker and len(unique_docs) > top_k:
            try:
                loop = asyncio.get_running_loop()
                # rerank 方法内部可能也比较耗时
                reranked_results = await loop.run_in_executor(
                    None, 
                    self.reranker.rerank, 
                    query, unique_docs, top_k
                )
                final_docs = [doc for doc, score in reranked_results]
                scores = [score for doc, score in reranked_results]
                
                print(f"重排后返回 {len(final_docs)} 个文档")
                print(f"重排分数范围: {min(scores):.4f} - {max(scores):.4f}")
                
                return final_docs
            except Exception as e:
                print(f"⚠️ 重排失败: {e},使用原始检索结果")
                return unique_docs[:top_k]
        else:
            return unique_docs[:top_k]
    
    def expand_query(self, query: str) -> List[str]:
        """扩展查询,生成相关查询"""
        if not self.query_expansion_model:
            return [query]
            
        try:
            # 使用LLM生成扩展查询
            prompt = QUERY_EXPANSION_PROMPT.format(query=query)
            expanded_queries_text = self.query_expansion_model.invoke(prompt)
            
            # 解析扩展查询
            expanded_queries = [query]  # 包含原始查询
            for line in expanded_queries_text.strip().split('\n'):
                line = line.strip()
                if line and not line.startswith('#') and not line.startswith('//'):
                    # 移除可能的编号前缀
                    if line[0].isdigit() and '.' in line[:5]:
                        line = line.split('.', 1)[1].strip()
                    expanded_queries.append(line)
            
            # 限制扩展查询数量
            return expanded_queries[:MAX_EXPANDED_QUERIES + 1]  # +1 因为包含原始查询
        except Exception as e:
            print(f"⚠️ 查询扩展失败: {e}")
            return [query]
    
    def encode_image(self, image_path: str) -> np.ndarray:
        """编码图像为嵌入向量"""
        if not self.image_embeddings_model:
            raise ValueError("多模态支持未初始化")
            
        try:
            # 加载并处理图像
            image = Image.open(image_path).convert('RGB')
            inputs = self.image_processor(images=image, return_tensors="pt")
            
            # 获取图像嵌入
            with torch.no_grad():
                image_features = self.image_embeddings_model.get_image_features(**inputs)
                # 标准化嵌入向量
                image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
                
            return image_features.cpu().numpy().flatten()
        except Exception as e:
            print(f"⚠️ 图像编码失败: {e}")
            raise
    
    def multimodal_retrieve(self, query: str, image_paths: List[str] = None, top_k: int = 5) -> List:
        """多模态检索,结合文本和图像"""
        if not ENABLE_MULTIMODAL or not self.image_embeddings_model:
            # 如果多模态未启用,回退到文本检索
            return self.hybrid_retrieve(query, top_k) if ENABLE_HYBRID_SEARCH else self.retriever.invoke(query)[:top_k]
        
        # 文本检索
        text_docs = self.hybrid_retrieve(query, top_k) if ENABLE_HYBRID_SEARCH else self.retriever.invoke(query)[:top_k]
        
        # 如果没有提供图像,直接返回文本检索结果
        if not image_paths:
            return text_docs
            
        try:
            # 图像检索
            image_results = []
            for image_path in image_paths:
                # 检查文件格式
                file_ext = image_path.split('.')[-1].lower()
                if file_ext not in SUPPORTED_IMAGE_FORMATS:
                    print(f"⚠️ 不支持的图像格式: {file_ext}")
                    continue
                    
                # 编码图像
                image_embedding = self.encode_image(image_path)
                
                # 这里应该实现图像到文本的匹配逻辑
                # 由于原始实现中没有图像数据库,我们简化处理
                # 在实际应用中,应该有一个图像数据库和相应的检索逻辑
                
            # 合并文本和图像结果(简化版本)
            # 在实际应用中,应该有更复杂的融合逻辑
            final_docs = text_docs  # 简化版本,仅返回文本结果
            
            print(f"✅ 多模态检索完成,返回 {len(final_docs)} 个结果")
            return final_docs
        except Exception as e:
            print(f"⚠️ 多模态检索失败: {e}")
            print("回退到文本检索")
            return text_docs
    
    def hybrid_retrieve(self, query: str, top_k: int = 5) -> List:
        """混合检索,结合向量检索和关键词检索"""
        if not ENABLE_HYBRID_SEARCH or not self.ensemble_retriever:
            # 如果混合检索未启用,回退到向量检索
            return self.retriever.invoke(query)[:top_k]
            
        try:
            # 使用集成检索器进行混合检索
            results = self.ensemble_retriever.invoke(query)
            return results[:top_k]
        except Exception as e:
            print(f"⚠️ 混合检索失败: {e}")
            print("回退到向量检索")
            return self.retriever.invoke(query)[:top_k]
    
    def enhanced_retrieve(self, query: str, top_k: int = 5, rerank_candidates: int = 20, 
                         image_paths: List[str] = None, use_query_expansion: bool = None):
        """增强检索:先检索更多候选,然后重排,支持查询扩展和多模态
        
        Args:
            query: 查询字符串
            top_k: 返回的文档数量
            rerank_candidates: 重排前的候选文档数量
            image_paths: 图像路径列表,用于多模态检索
            use_query_expansion: 是否使用查询扩展,None表示使用配置默认值
        """
        # 确定是否使用查询扩展
        if use_query_expansion is None:
            use_query_expansion = ENABLE_QUERY_EXPANSION
            
        # 如果启用查询扩展,生成扩展查询
        if use_query_expansion:
            expanded_queries = self.expand_query(query)
            print(f"查询扩展: {len(expanded_queries)} 个查询")
        else:
            expanded_queries = [query]
            
        # 多模态检索(如果提供了图像)
        if image_paths and ENABLE_MULTIMODAL:
            return self.multimodal_retrieve(query, image_paths, top_k)
            
        # 混合检索或向量检索
        all_candidate_docs = []
        for expanded_query in expanded_queries:
            if ENABLE_HYBRID_SEARCH:
                # 使用混合检索
                docs = self.hybrid_retrieve(expanded_query, rerank_candidates)
            else:
                # 使用向量检索
                docs = self.retriever.invoke(expanded_query)
                if len(docs) > rerank_candidates:
                    docs = docs[:rerank_candidates]
            
            all_candidate_docs.extend(docs)
            
        # 去重(基于文档内容)
        unique_docs = []
        seen_content = set()
        for doc in all_candidate_docs:
            content = doc.page_content
            if content not in seen_content:
                seen_content.add(content)
                unique_docs.append(doc)
                
        print(f"检索获得 {len(unique_docs)} 个候选文档")
        
        # 重排(如果重排器可用)
        if self.reranker and len(unique_docs) > top_k:
            try:
                reranked_results = self.reranker.rerank(query, unique_docs, top_k)
                final_docs = [doc for doc, score in reranked_results]
                scores = [score for doc, score in reranked_results]
                
                print(f"重排后返回 {len(final_docs)} 个文档")
                print(f"重排分数范围: {min(scores):.4f} - {max(scores):.4f}")
                
                return final_docs
            except Exception as e:
                print(f"⚠️ 重排失败: {e},使用原始检索结果")
                return unique_docs[:top_k]
        else:
            # 不重排或候选数量不足
            return unique_docs[:top_k]
    
    def compare_retrieval_methods(self, query: str, top_k: int = 5, image_paths: List[str] = None):
        """比较不同检索方法的效果"""
        if not self.retriever:
            return {}
        
        results = {
            'query': query,
            'image_paths': image_paths
        }
        
        # 原始检索 (使用 invoke 替代 get_relevant_documents)
        original_docs = self.retriever.invoke(query)[:top_k]
        results['vector_retrieval'] = {
            'count': len(original_docs),
            'documents': [{
                'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content,
                'metadata': getattr(doc, 'metadata', {})
            } for doc in original_docs]
        }
        
        # 混合检索(如果启用)
        if ENABLE_HYBRID_SEARCH and self.ensemble_retriever:
            hybrid_docs = self.hybrid_retrieve(query, top_k)
            results['hybrid_retrieval'] = {
                'count': len(hybrid_docs),
                'documents': [{
                    'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content,
                    'metadata': getattr(doc, 'metadata', {})
                } for doc in hybrid_docs]
            }
        
        # 查询扩展检索(如果启用)
        if ENABLE_QUERY_EXPANSION and self.query_expansion_model:
            expanded_docs = self.enhanced_retrieve(query, top_k, use_query_expansion=True)
            results['expanded_query_retrieval'] = {
                'count': len(expanded_docs),
                'documents': [{
                    'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content,
                    'metadata': getattr(doc, 'metadata', {})
                } for doc in expanded_docs]
            }
        
        # 多模态检索(如果启用且有图像)
        if ENABLE_MULTIMODAL and image_paths:
            multimodal_docs = self.multimodal_retrieve(query, image_paths, top_k)
            results['multimodal_retrieval'] = {
                'count': len(multimodal_docs),
                'documents': [{
                    'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content,
                    'metadata': getattr(doc, 'metadata', {})
                } for doc in multimodal_docs]
            }
        
        # 增强检索(带重排)
        enhanced_docs = self.enhanced_retrieve(query, top_k)
        results['enhanced_retrieval'] = {
            'count': len(enhanced_docs),
            'documents': [{
                'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content,
                'metadata': getattr(doc, 'metadata', {})
            } for doc in enhanced_docs]
        }
        
        # 添加配置信息
        results['configuration'] = {
            'hybrid_search_enabled': ENABLE_HYBRID_SEARCH,
            'query_expansion_enabled': ENABLE_QUERY_EXPANSION,
            'multimodal_enabled': ENABLE_MULTIMODAL,
            'reranker_used': self.reranker is not None,
            'hybrid_weights': HYBRID_SEARCH_WEIGHTS if ENABLE_HYBRID_SEARCH else None,
            'multimodal_weights': MULTIMODAL_WEIGHTS if ENABLE_MULTIMODAL else None
        }
        
        return results

    def format_docs(self, docs):
        """格式化文档用于生成"""
        return "\n\n".join(doc.page_content for doc in docs)


def initialize_document_processor():
    """初始化文档处理器并设置知识库,支持持久化加载和去重"""
    import os
    import json
    import hashlib
    
    # 设置持久化目录(相对路径)
    current_dir = os.path.dirname(os.path.abspath(__file__))
    persist_dir = os.path.join(current_dir, 'chroma_db')
    metadata_file = os.path.join(current_dir, 'document_metadata.json')
    
    processor: DocumentProcessor = DocumentProcessor()
    
    # 加载已处理文档的元数据
    processed_sources = set()
    if os.path.exists(metadata_file):
        try:
            with open(metadata_file, 'r', encoding='utf-8') as f:
                metadata = json.load(f)
                processed_sources = set(metadata.get('processed_sources', []))
                print(f"📊 已加载元数据,发现 {len(processed_sources)} 个已处理的数据源")
        except Exception as e:
            print(f"⚠️  加载元数据失败: {e}")
    
    # 检查是否已存在持久化的向量数据库
    if os.path.exists(persist_dir) and os.listdir(persist_dir):
        print(f"✅ 检测到已存在的向量数据库: {persist_dir}")
        print("📂 正在加载持久化的向量数据库...")
        try:
            # 加载已有的向量数据库
            vectorstore = Chroma(
                persist_directory=persist_dir,
                embedding_function=processor.embeddings,
                collection_name=COLLECTION_NAME
            )
            retriever = vectorstore.as_retriever()
            
            # 获取文档数量
            doc_count = vectorstore._collection.count()
            print(f"✅ 已加载持久化的向量数据库,共 {doc_count} 个文档块")
            
            # 设置processor的vectorstore和retriever
            processor.vectorstore = vectorstore
            processor.retriever = retriever
            
            # 检查是否需要添加新数据源
            default_urls = set(KNOWLEDGE_BASE_URLS)
            new_urls = default_urls - processed_sources
            
            if new_urls:
                print(f"🆕 检测到 {len(new_urls)} 个新的数据源,正在添加...")
                try:
                    # 加载新数据源
                    new_docs = processor.load_documents(list(new_urls))
                    new_doc_splits = processor.split_documents(new_docs)
                    
                    # 添加到现有向量数据库
                    vectorstore.add_documents(new_doc_splits)
                    print(f"✅ 已添加 {len(new_doc_splits)} 个新文档块")
                    
                    # 更新元数据
                    processed_sources.update(new_urls)
                    with open(metadata_file, 'w', encoding='utf-8') as f:
                        json.dump({'processed_sources': list(processed_sources)}, f, ensure_ascii=False, indent=2)
                    
                except Exception as e:
                    print(f"⚠️  添加新数据源失败: {e}")
            else:
                print("✅ 所有默认数据源已处理,无需重复加载")
            
            # doc_splits 设置为 None,因为已经持久化了
            doc_splits = None
            
            return processor, vectorstore, retriever, doc_splits
            
        except Exception as e:
            print(f"⚠️  加载持久化向量数据库失败: {e}")
            print("🔧 将重新创建向量数据库...")
    
    # 如果没有持久化数据或加载失败,创建新的
    print("🔧 正在创建新的向量数据库...")
    vectorstore, retriever, doc_splits = processor.setup_knowledge_base()
    
    # 保存元数据
    try:
        processed_sources.update(KNOWLEDGE_BASE_URLS)
        with open(metadata_file, 'w', encoding='utf-8') as f:
            json.dump({'processed_sources': list(processed_sources)}, f, ensure_ascii=False, indent=2)
        print(f"✅ 元数据已保存到: {metadata_file}")
    except Exception as e:
        print(f"⚠️  保存元数据失败: {e}")
    
    return processor, vectorstore, retriever, doc_splits