Spaces:
Paused
Paused
File size: 34,954 Bytes
399f3c6 371a40c 55a0955 94a7032 55a0955 371a40c 399f3c6 fa26a24 399f3c6 ef805fe 215d348 ef805fe 399f3c6 ef805fe 69629dd 399f3c6 a1ec589 399f3c6 ef805fe 399f3c6 ef805fe 399f3c6 db5bfaa 399f3c6 db5bfaa 399f3c6 db5bfaa 399f3c6 ef805fe 399f3c6 116d9c5 399f3c6 116d9c5 215d348 399f3c6 ef805fe a1ec589 ef805fe 116d9c5 399f3c6 69629dd 399f3c6 2d46508 ef805fe 399f3c6 ef805fe 399f3c6 ef805fe 399f3c6 ef805fe 399f3c6 ef805fe 399f3c6 ef805fe 399f3c6 ef805fe 399f3c6 ef805fe 450704e ef805fe 399f3c6 ef805fe 399f3c6 ef805fe 399f3c6 ef805fe 399f3c6 ef805fe 399f3c6 ef805fe 399f3c6 116d9c5 401184c 116d9c5 399f3c6 116d9c5 69629dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
"""
文档处理和向量化模块
负责文档加载、文本分块、向量化和向量数据库初始化
"""
try:
from langchain.text_splitter import RecursiveCharacterTextSplitter
except ImportError:
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.retrievers import BM25Retriever
from config import (
KNOWLEDGE_BASE_URLS,
CHUNK_SIZE,
CHUNK_OVERLAP,
COLLECTION_NAME,
EMBEDDING_MODEL,
# 混合检索配置
ENABLE_HYBRID_SEARCH,
HYBRID_SEARCH_WEIGHTS,
KEYWORD_SEARCH_K,
BM25_K1,
BM25_B,
# 向量库配置
VECTOR_STORE_TYPE,
MILVUS_HOST,
MILVUS_PORT,
MILVUS_USER,
MILVUS_PASSWORD,
MILVUS_URI,
# 查询扩展配置
ENABLE_QUERY_EXPANSION,
QUERY_EXPANSION_MODEL,
QUERY_EXPANSION_PROMPT,
MAX_EXPANDED_QUERIES,
# 多模态配置
ENABLE_MULTIMODAL,
MULTIMODAL_IMAGE_MODEL,
SUPPORTED_IMAGE_FORMATS,
IMAGE_EMBEDDING_DIM,
MULTIMODAL_WEIGHTS
)
from reranker import create_reranker
# 多模态支持相关导入
import base64
import io
from PIL import Image
import numpy as np
from typing import List, Dict, Any, Optional, Union
try:
from langchain_core.documents import Document
except ImportError:
try:
from langchain_core.documents import Document
except ImportError:
from langchain.schema import Document
class CustomEnsembleRetriever:
"""自定义集成检索器,结合向量检索和BM25检索"""
def __init__(self, retrievers, weights):
self.retrievers = retrievers
self.weights = weights
def invoke(self, query):
"""执行检索并合并结果"""
# 获取各检索器的结果
all_results = []
for i, retriever in enumerate(self.retrievers):
results = retriever.invoke(query)
for doc in results:
# 添加检索器索引和权重信息
doc.metadata["retriever_index"] = i
doc.metadata["retriever_weight"] = self.weights[i]
all_results.append(doc)
# 根据权重排序并去重
# 简单实现:先按检索器索引排序,再按权重排序
all_results.sort(key=lambda x: (x.metadata["retriever_index"], -x.metadata["retriever_weight"]))
# 去重(基于文档内容)
unique_results = []
seen_content = set()
for doc in all_results:
content = doc.page_content
if content not in seen_content:
seen_content.add(content)
unique_results.append(doc)
return unique_results
class DocumentProcessor:
"""文档处理器类,负责文档加载、处理和向量化"""
def __init__(self):
self.text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP
)
# Try to initialize embeddings with error handling
try:
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"✅ 检测到设备: {device}")
if device == 'cuda':
print(f" GPU型号: {torch.cuda.get_device_name(0)}")
print(f" GPU内存: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f}GB")
self.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2", # 轻量级嵌入模型
model_kwargs={'device': device}, # 自动选择GPU或CPU
encode_kwargs={'normalize_embeddings': True} # 标准化嵌入向量
)
print(f"✅ HuggingFace嵌入模型初始化成功 (设备: {device})")
except Exception as e:
print(f"⚠️ HuggingFace嵌入初始化失败: {e}")
print("正在尝试备用嵌入方案...")
# Fallback to OpenAI embeddings or other alternatives
from langchain_community.embeddings import FakeEmbeddings
self.embeddings = FakeEmbeddings(size=384) # For testing purposes
print("✅ 使用测试嵌入模型")
self.vectorstore = None
self.retriever = None
self.bm25_retriever = None # BM25检索器
self.ensemble_retriever = None # 集成检索器
# 初始化重排器
self.reranker = None
self._setup_reranker()
# 初始化多模态支持
self.image_embeddings_model = None
self._setup_multimodal()
# 初始化查询扩展
self.query_expansion_model = None
self._setup_query_expansion()
def _setup_reranker(self):
"""
设置重排器
使用 CrossEncoder 提升重排准确率
"""
try:
# 使用 CrossEncoder 重排器 (准确率最高) ⭐
print("🔧 正在初始化 CrossEncoder 重排器...")
self.reranker = create_reranker(
'crossencoder',
model_name='cross-encoder/ms-marco-MiniLM-L-6-v2', # 轻量级模型
max_length=512
)
print("✅ CrossEncoder 重排器初始化成功")
except Exception as e:
print(f"⚠️ CrossEncoder 初始化失败: {e}")
print("🔄 尝试回退到混合重排器...")
try:
# 回退到混合重排器
self.reranker = create_reranker('hybrid', self.embeddings)
print("✅ 混合重排器初始化成功")
except Exception as e2:
print(f"⚠️ 重排器初始化完全失败: {e2}")
print("⚠️ 将使用基础检索,不进行重排")
def _setup_multimodal(self):
"""设置多模态支持"""
if not ENABLE_MULTIMODAL:
print("⚠️ 多模态支持已禁用")
return
try:
print("🔧 正在初始化多模态支持...")
from transformers import CLIPProcessor, CLIPModel
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.image_embeddings_model = CLIPModel.from_pretrained(MULTIMODAL_IMAGE_MODEL).to(device)
self.image_processor = CLIPProcessor.from_pretrained(MULTIMODAL_IMAGE_MODEL)
print(f"✅ 多模态支持初始化成功 (设备: {device})")
except Exception as e:
print(f"⚠️ 多模态支持初始化失败: {e}")
print("⚠️ 将仅使用文本检索")
self.image_embeddings_model = None
def _setup_query_expansion(self):
"""设置查询扩展"""
if not ENABLE_QUERY_EXPANSION:
print("⚠️ 查询扩展已禁用")
return
try:
print("🔧 正在初始化查询扩展...")
from langchain_community.llms import Ollama
self.query_expansion_model = Ollama(model=QUERY_EXPANSION_MODEL)
print(f"✅ 查询扩展初始化成功 (模型: {QUERY_EXPANSION_MODEL})")
except Exception as e:
print(f"⚠️ 查询扩展初始化失败: {e}")
print("⚠️ 将不使用查询扩展")
self.query_expansion_model = None
def load_documents(self, urls=None):
"""从URL加载文档"""
if urls is None:
urls = KNOWLEDGE_BASE_URLS
print(f"正在加载 {len(urls)} 个URL的文档...")
docs = [WebBaseLoader(url).load() for url in urls]
docs_list = [item for sublist in docs for item in sublist]
print(f"成功加载 {len(docs_list)} 个文档")
return docs_list
def split_documents(self, docs):
"""将文档分割成块"""
print("正在分割文档...")
doc_splits = self.text_splitter.split_documents(docs)
print(f"文档分割完成,共 {len(doc_splits)} 个文档块")
return doc_splits
def create_vectorstore(self, doc_splits, persist_directory=None):
"""创建向量数据库
Args:
doc_splits: 文档块列表
persist_directory: 持久化目录(可选)
"""
print("正在创建向量数据库...")
# 如果没有指定持久化目录,使用默认相对路径
if persist_directory is None:
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
persist_directory = os.path.join(current_dir, 'chroma_db')
os.makedirs(persist_directory, exist_ok=True)
print(f"💾 使用默认持久化目录: {persist_directory}")
if VECTOR_STORE_TYPE.lower() == "milvus":
try:
from langchain_community.vectorstores import Milvus
# 准备连接参数
connection_args = {}
# 优先使用 URI (支持 Milvus Lite 本地文件 或 Zilliz Cloud)
# 只要 MILVUS_URI 被设置(config中默认是 ./milvus_rag.db),且不是空字符串
if MILVUS_URI and len(MILVUS_URI.strip()) > 0:
# 判断是本地文件还是云服务
is_local_file = not (MILVUS_URI.startswith("http://") or MILVUS_URI.startswith("https://"))
mode_name = "Lite (Local File)" if is_local_file else "Cloud (HTTP)"
print(f"🔄 正在连接 Milvus {mode_name} ({MILVUS_URI})...")
connection_args["uri"] = MILVUS_URI
# 如果是云服务,通常需要 token (使用 password 字段作为 token)
if not is_local_file and MILVUS_PASSWORD:
connection_args["token"] = MILVUS_PASSWORD
else:
# 传统的 Host/Port 连接
print(f"🔄 正在连接 Milvus Server ({MILVUS_HOST}:{MILVUS_PORT})...")
connection_args = {
"host": MILVUS_HOST,
"port": MILVUS_PORT,
"user": MILVUS_USER,
"password": MILVUS_PASSWORD
}
self.vectorstore = Milvus.from_documents(
documents=doc_splits,
embedding=self.embeddings,
collection_name=COLLECTION_NAME,
connection_args=connection_args,
drop_old=True # 重新创建索引
)
print("✅ Milvus 向量数据库初始化成功")
except ImportError:
print("❌ 未安装 pymilvus,请运行: pip install pymilvus")
raise
except Exception as e:
print(f"❌ Milvus 连接失败: {e}")
print("⚠️ 回退到 Chroma 数据库...")
# Fallback to Chroma
self.vectorstore = Chroma.from_documents(
documents=doc_splits,
collection_name=COLLECTION_NAME,
embedding=self.embeddings,
persist_directory=persist_directory
)
else:
# Default: Chroma
self.vectorstore = Chroma.from_documents(
documents=doc_splits,
collection_name=COLLECTION_NAME,
embedding=self.embeddings,
persist_directory=persist_directory # 添加持久化目录
)
self.retriever = self.vectorstore.as_retriever()
# 如果启用混合检索,创建BM25检索器和集成检索器
if ENABLE_HYBRID_SEARCH:
print("正在初始化混合检索...")
try:
# 创建BM25检索器
self.bm25_retriever = BM25Retriever.from_documents(
doc_splits,
k=KEYWORD_SEARCH_K,
k1=BM25_K1,
b=BM25_B
)
# 创建集成检索器,结合向量检索和BM25检索
self.ensemble_retriever = CustomEnsembleRetriever(
retrievers=[self.retriever, self.bm25_retriever],
weights=[HYBRID_SEARCH_WEIGHTS["vector"], HYBRID_SEARCH_WEIGHTS["keyword"]]
)
print("✅ 混合检索初始化成功")
except Exception as e:
print(f"⚠️ 混合检索初始化失败: {e}")
print("⚠️ 将仅使用向量检索")
self.ensemble_retriever = None
print(f"✅ 向量数据库创建完成并持久化到: {persist_directory}")
return self.vectorstore, self.retriever
def get_all_documents_from_vectorstore(self, limit: Optional[int] = None) -> List[Document]:
"""从已持久化的向量数据库读取所有文档内容并构造 Document 列表"""
if not self.vectorstore:
return []
try:
data = self.vectorstore._collection.get(include=["documents", "metadatas"]) # type: ignore
docs_raw = data.get("documents") or []
metas = data.get("metadatas") or []
docs: List[Document] = []
for i, content in enumerate(docs_raw):
if content:
meta = metas[i] if i < len(metas) else {}
docs.append(Document(page_content=content, metadata=meta))
if limit:
return docs[:limit]
return docs
except Exception as e:
print(f"⚠️ 读取向量库文档失败: {e}")
return []
def setup_knowledge_base(self, urls=None, enable_graphrag=False):
"""设置完整的知识库(加载、分割、向量化)
Args:
urls: 文档URL列表
enable_graphrag: 是否启用GraphRAG索引
Returns:
vectorstore, retriever, doc_splits
"""
docs = self.load_documents(urls)
doc_splits = self.split_documents(docs)
vectorstore, retriever = self.create_vectorstore(doc_splits)
# 返回doc_splits用于GraphRAG索引
return vectorstore, retriever, doc_splits
async def async_expand_query(self, query: str) -> List[str]:
"""异步扩展查询"""
if not self.query_expansion_model:
return [query]
try:
# 使用LLM生成扩展查询
prompt = QUERY_EXPANSION_PROMPT.format(query=query)
expanded_queries_text = await self.query_expansion_model.ainvoke(prompt)
# 解析扩展查询
expanded_queries = [query] # 包含原始查询
for line in expanded_queries_text.strip().split('\n'):
line = line.strip()
if line and not line.startswith('#') and not line.startswith('//'):
# 移除可能的编号前缀
if line[0].isdigit() and '.' in line[:5]:
line = line.split('.', 1)[1].strip()
expanded_queries.append(line)
# 限制扩展查询数量
return expanded_queries[:MAX_EXPANDED_QUERIES + 1]
except Exception as e:
print(f"⚠️ 异步查询扩展失败: {e}")
return [query]
async def async_hybrid_retrieve(self, query: str, top_k: int = 5) -> List:
"""异步混合检索"""
if not ENABLE_HYBRID_SEARCH or not self.ensemble_retriever:
return await self.retriever.ainvoke(query)
try:
results = await self.ensemble_retriever.ainvoke(query)
return results[:top_k]
except Exception as e:
print(f"⚠️ 异步混合检索失败: {e}")
print("回退到向量检索")
return await self.retriever.ainvoke(query)
async def async_enhanced_retrieve(self, query: str, top_k: int = 5, rerank_candidates: int = 20,
image_paths: List[str] = None, use_query_expansion: bool = None):
"""异步增强检索"""
import asyncio
# 确定是否使用查询扩展
if use_query_expansion is None:
use_query_expansion = ENABLE_QUERY_EXPANSION
# 如果启用查询扩展,生成扩展查询
if use_query_expansion:
expanded_queries = await self.async_expand_query(query)
print(f"查询扩展: {len(expanded_queries)} 个查询")
else:
expanded_queries = [query]
# 多模态检索(暂时保持同步,使用线程池)
if image_paths and ENABLE_MULTIMODAL:
loop = asyncio.get_running_loop()
return await loop.run_in_executor(None, self.multimodal_retrieve, query, image_paths, top_k)
# 混合检索或向量检索
all_candidate_docs = []
async def retrieve_single(q):
if ENABLE_HYBRID_SEARCH:
docs = await self.async_hybrid_retrieve(q, rerank_candidates)
else:
docs = await self.retriever.ainvoke(q)
if len(docs) > rerank_candidates:
docs = docs[:rerank_candidates]
return docs
# 并发执行所有查询的检索
results = await asyncio.gather(*[retrieve_single(q) for q in expanded_queries])
for docs in results:
all_candidate_docs.extend(docs)
# 去重(基于文档内容)
unique_docs = []
seen_content = set()
for doc in all_candidate_docs:
content = doc.page_content
if content not in seen_content:
seen_content.add(content)
unique_docs.append(doc)
print(f"检索获得 {len(unique_docs)} 个候选文档")
# 重排(如果重排器可用)
# 注意:重排通常是计算密集型,建议放入线程池
if self.reranker and len(unique_docs) > top_k:
try:
loop = asyncio.get_running_loop()
# rerank 方法内部可能也比较耗时
reranked_results = await loop.run_in_executor(
None,
self.reranker.rerank,
query, unique_docs, top_k
)
final_docs = [doc for doc, score in reranked_results]
scores = [score for doc, score in reranked_results]
print(f"重排后返回 {len(final_docs)} 个文档")
print(f"重排分数范围: {min(scores):.4f} - {max(scores):.4f}")
return final_docs
except Exception as e:
print(f"⚠️ 重排失败: {e},使用原始检索结果")
return unique_docs[:top_k]
else:
return unique_docs[:top_k]
def expand_query(self, query: str) -> List[str]:
"""扩展查询,生成相关查询"""
if not self.query_expansion_model:
return [query]
try:
# 使用LLM生成扩展查询
prompt = QUERY_EXPANSION_PROMPT.format(query=query)
expanded_queries_text = self.query_expansion_model.invoke(prompt)
# 解析扩展查询
expanded_queries = [query] # 包含原始查询
for line in expanded_queries_text.strip().split('\n'):
line = line.strip()
if line and not line.startswith('#') and not line.startswith('//'):
# 移除可能的编号前缀
if line[0].isdigit() and '.' in line[:5]:
line = line.split('.', 1)[1].strip()
expanded_queries.append(line)
# 限制扩展查询数量
return expanded_queries[:MAX_EXPANDED_QUERIES + 1] # +1 因为包含原始查询
except Exception as e:
print(f"⚠️ 查询扩展失败: {e}")
return [query]
def encode_image(self, image_path: str) -> np.ndarray:
"""编码图像为嵌入向量"""
if not self.image_embeddings_model:
raise ValueError("多模态支持未初始化")
try:
# 加载并处理图像
image = Image.open(image_path).convert('RGB')
inputs = self.image_processor(images=image, return_tensors="pt")
# 获取图像嵌入
with torch.no_grad():
image_features = self.image_embeddings_model.get_image_features(**inputs)
# 标准化嵌入向量
image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
return image_features.cpu().numpy().flatten()
except Exception as e:
print(f"⚠️ 图像编码失败: {e}")
raise
def multimodal_retrieve(self, query: str, image_paths: List[str] = None, top_k: int = 5) -> List:
"""多模态检索,结合文本和图像"""
if not ENABLE_MULTIMODAL or not self.image_embeddings_model:
# 如果多模态未启用,回退到文本检索
return self.hybrid_retrieve(query, top_k) if ENABLE_HYBRID_SEARCH else self.retriever.invoke(query)[:top_k]
# 文本检索
text_docs = self.hybrid_retrieve(query, top_k) if ENABLE_HYBRID_SEARCH else self.retriever.invoke(query)[:top_k]
# 如果没有提供图像,直接返回文本检索结果
if not image_paths:
return text_docs
try:
# 图像检索
image_results = []
for image_path in image_paths:
# 检查文件格式
file_ext = image_path.split('.')[-1].lower()
if file_ext not in SUPPORTED_IMAGE_FORMATS:
print(f"⚠️ 不支持的图像格式: {file_ext}")
continue
# 编码图像
image_embedding = self.encode_image(image_path)
# 这里应该实现图像到文本的匹配逻辑
# 由于原始实现中没有图像数据库,我们简化处理
# 在实际应用中,应该有一个图像数据库和相应的检索逻辑
# 合并文本和图像结果(简化版本)
# 在实际应用中,应该有更复杂的融合逻辑
final_docs = text_docs # 简化版本,仅返回文本结果
print(f"✅ 多模态检索完成,返回 {len(final_docs)} 个结果")
return final_docs
except Exception as e:
print(f"⚠️ 多模态检索失败: {e}")
print("回退到文本检索")
return text_docs
def hybrid_retrieve(self, query: str, top_k: int = 5) -> List:
"""混合检索,结合向量检索和关键词检索"""
if not ENABLE_HYBRID_SEARCH or not self.ensemble_retriever:
# 如果混合检索未启用,回退到向量检索
return self.retriever.invoke(query)[:top_k]
try:
# 使用集成检索器进行混合检索
results = self.ensemble_retriever.invoke(query)
return results[:top_k]
except Exception as e:
print(f"⚠️ 混合检索失败: {e}")
print("回退到向量检索")
return self.retriever.invoke(query)[:top_k]
def enhanced_retrieve(self, query: str, top_k: int = 5, rerank_candidates: int = 20,
image_paths: List[str] = None, use_query_expansion: bool = None):
"""增强检索:先检索更多候选,然后重排,支持查询扩展和多模态
Args:
query: 查询字符串
top_k: 返回的文档数量
rerank_candidates: 重排前的候选文档数量
image_paths: 图像路径列表,用于多模态检索
use_query_expansion: 是否使用查询扩展,None表示使用配置默认值
"""
# 确定是否使用查询扩展
if use_query_expansion is None:
use_query_expansion = ENABLE_QUERY_EXPANSION
# 如果启用查询扩展,生成扩展查询
if use_query_expansion:
expanded_queries = self.expand_query(query)
print(f"查询扩展: {len(expanded_queries)} 个查询")
else:
expanded_queries = [query]
# 多模态检索(如果提供了图像)
if image_paths and ENABLE_MULTIMODAL:
return self.multimodal_retrieve(query, image_paths, top_k)
# 混合检索或向量检索
all_candidate_docs = []
for expanded_query in expanded_queries:
if ENABLE_HYBRID_SEARCH:
# 使用混合检索
docs = self.hybrid_retrieve(expanded_query, rerank_candidates)
else:
# 使用向量检索
docs = self.retriever.invoke(expanded_query)
if len(docs) > rerank_candidates:
docs = docs[:rerank_candidates]
all_candidate_docs.extend(docs)
# 去重(基于文档内容)
unique_docs = []
seen_content = set()
for doc in all_candidate_docs:
content = doc.page_content
if content not in seen_content:
seen_content.add(content)
unique_docs.append(doc)
print(f"检索获得 {len(unique_docs)} 个候选文档")
# 重排(如果重排器可用)
if self.reranker and len(unique_docs) > top_k:
try:
reranked_results = self.reranker.rerank(query, unique_docs, top_k)
final_docs = [doc for doc, score in reranked_results]
scores = [score for doc, score in reranked_results]
print(f"重排后返回 {len(final_docs)} 个文档")
print(f"重排分数范围: {min(scores):.4f} - {max(scores):.4f}")
return final_docs
except Exception as e:
print(f"⚠️ 重排失败: {e},使用原始检索结果")
return unique_docs[:top_k]
else:
# 不重排或候选数量不足
return unique_docs[:top_k]
def compare_retrieval_methods(self, query: str, top_k: int = 5, image_paths: List[str] = None):
"""比较不同检索方法的效果"""
if not self.retriever:
return {}
results = {
'query': query,
'image_paths': image_paths
}
# 原始检索 (使用 invoke 替代 get_relevant_documents)
original_docs = self.retriever.invoke(query)[:top_k]
results['vector_retrieval'] = {
'count': len(original_docs),
'documents': [{
'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content,
'metadata': getattr(doc, 'metadata', {})
} for doc in original_docs]
}
# 混合检索(如果启用)
if ENABLE_HYBRID_SEARCH and self.ensemble_retriever:
hybrid_docs = self.hybrid_retrieve(query, top_k)
results['hybrid_retrieval'] = {
'count': len(hybrid_docs),
'documents': [{
'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content,
'metadata': getattr(doc, 'metadata', {})
} for doc in hybrid_docs]
}
# 查询扩展检索(如果启用)
if ENABLE_QUERY_EXPANSION and self.query_expansion_model:
expanded_docs = self.enhanced_retrieve(query, top_k, use_query_expansion=True)
results['expanded_query_retrieval'] = {
'count': len(expanded_docs),
'documents': [{
'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content,
'metadata': getattr(doc, 'metadata', {})
} for doc in expanded_docs]
}
# 多模态检索(如果启用且有图像)
if ENABLE_MULTIMODAL and image_paths:
multimodal_docs = self.multimodal_retrieve(query, image_paths, top_k)
results['multimodal_retrieval'] = {
'count': len(multimodal_docs),
'documents': [{
'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content,
'metadata': getattr(doc, 'metadata', {})
} for doc in multimodal_docs]
}
# 增强检索(带重排)
enhanced_docs = self.enhanced_retrieve(query, top_k)
results['enhanced_retrieval'] = {
'count': len(enhanced_docs),
'documents': [{
'content': doc.page_content[:200] + '...' if len(doc.page_content) > 200 else doc.page_content,
'metadata': getattr(doc, 'metadata', {})
} for doc in enhanced_docs]
}
# 添加配置信息
results['configuration'] = {
'hybrid_search_enabled': ENABLE_HYBRID_SEARCH,
'query_expansion_enabled': ENABLE_QUERY_EXPANSION,
'multimodal_enabled': ENABLE_MULTIMODAL,
'reranker_used': self.reranker is not None,
'hybrid_weights': HYBRID_SEARCH_WEIGHTS if ENABLE_HYBRID_SEARCH else None,
'multimodal_weights': MULTIMODAL_WEIGHTS if ENABLE_MULTIMODAL else None
}
return results
def format_docs(self, docs):
"""格式化文档用于生成"""
return "\n\n".join(doc.page_content for doc in docs)
def initialize_document_processor():
"""初始化文档处理器并设置知识库,支持持久化加载和去重"""
import os
import json
import hashlib
# 设置持久化目录(相对路径)
current_dir = os.path.dirname(os.path.abspath(__file__))
persist_dir = os.path.join(current_dir, 'chroma_db')
metadata_file = os.path.join(current_dir, 'document_metadata.json')
processor: DocumentProcessor = DocumentProcessor()
# 加载已处理文档的元数据
processed_sources = set()
if os.path.exists(metadata_file):
try:
with open(metadata_file, 'r', encoding='utf-8') as f:
metadata = json.load(f)
processed_sources = set(metadata.get('processed_sources', []))
print(f"📊 已加载元数据,发现 {len(processed_sources)} 个已处理的数据源")
except Exception as e:
print(f"⚠️ 加载元数据失败: {e}")
# 检查是否已存在持久化的向量数据库
if os.path.exists(persist_dir) and os.listdir(persist_dir):
print(f"✅ 检测到已存在的向量数据库: {persist_dir}")
print("📂 正在加载持久化的向量数据库...")
try:
# 加载已有的向量数据库
vectorstore = Chroma(
persist_directory=persist_dir,
embedding_function=processor.embeddings,
collection_name=COLLECTION_NAME
)
retriever = vectorstore.as_retriever()
# 获取文档数量
doc_count = vectorstore._collection.count()
print(f"✅ 已加载持久化的向量数据库,共 {doc_count} 个文档块")
# 设置processor的vectorstore和retriever
processor.vectorstore = vectorstore
processor.retriever = retriever
# 检查是否需要添加新数据源
default_urls = set(KNOWLEDGE_BASE_URLS)
new_urls = default_urls - processed_sources
if new_urls:
print(f"🆕 检测到 {len(new_urls)} 个新的数据源,正在添加...")
try:
# 加载新数据源
new_docs = processor.load_documents(list(new_urls))
new_doc_splits = processor.split_documents(new_docs)
# 添加到现有向量数据库
vectorstore.add_documents(new_doc_splits)
print(f"✅ 已添加 {len(new_doc_splits)} 个新文档块")
# 更新元数据
processed_sources.update(new_urls)
with open(metadata_file, 'w', encoding='utf-8') as f:
json.dump({'processed_sources': list(processed_sources)}, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"⚠️ 添加新数据源失败: {e}")
else:
print("✅ 所有默认数据源已处理,无需重复加载")
# doc_splits 设置为 None,因为已经持久化了
doc_splits = None
return processor, vectorstore, retriever, doc_splits
except Exception as e:
print(f"⚠️ 加载持久化向量数据库失败: {e}")
print("🔧 将重新创建向量数据库...")
# 如果没有持久化数据或加载失败,创建新的
print("🔧 正在创建新的向量数据库...")
vectorstore, retriever, doc_splits = processor.setup_knowledge_base()
# 保存元数据
try:
processed_sources.update(KNOWLEDGE_BASE_URLS)
with open(metadata_file, 'w', encoding='utf-8') as f:
json.dump({'processed_sources': list(processed_sources)}, f, ensure_ascii=False, indent=2)
print(f"✅ 元数据已保存到: {metadata_file}")
except Exception as e:
print(f"⚠️ 保存元数据失败: {e}")
return processor, vectorstore, retriever, doc_splits
|