Spaces:
Paused
Paused
File size: 23,169 Bytes
dbd527a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
"""
ๅ้ๅๅ Chroma ๅญๅจ่ฟ็จ่ฏฆ่งฃ
ไปๅๅฒๅ็ๆๆกฃๅฐๅ้ๆฐๆฎๅบ็ๅฎๆดๆต็จ
"""
print("=" * 80)
print("ๅ้ๅๅ Chroma ๅญๅจ่ฟ็จ่ฏฆ่งฃ")
print("=" * 80)
# ============================================================================
# Part 1: ๅฎๆดๆต็จๆฆ่ง
# ============================================================================
print("\n" + "=" * 80)
print("๐ Part 1: ๅฎๆดๆต็จๆฆ่ง")
print("=" * 80)
print("""
ไปๆๆกฃๅๅฒๅฐๅ้ๆฐๆฎๅบ็ๅฎๆดๆต็จ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Step 1: ๆๆกฃๅๅฒ
ๅๅงๆๆกฃ โ RecursiveCharacterTextSplitter โ 20 ไธช chunks
(5000 tokens) (ๆฏไธช 250 tokens)
Step 2: ๅ้ๅ (Embedding)
ๆฏไธช chunk โ HuggingFace ๆจกๅ โ ๅ้ (384็ปด)
"ไบบๅทฅๆบ่ฝๆฏ..." โ [0.12, -0.34, 0.56, ...]
Step 3: ๅญๅ
ฅ Chroma
ๅ้ + ๅๆ + ๅ
ๆฐๆฎ โ Chroma ๆฐๆฎๅบ
โโ ๆไน
ๅๅญๅจ
Step 4: ๆๅปบ็ดขๅผ
Chroma โ HNSW ็ดขๅผ โ ๅฟซ้่ฟไผผๆฃ็ดข
(ๅฑๆฌกๅๅพ็ปๆ)
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
""")
# ============================================================================
# Part 2: Embedding ๆจกๅ่ฏฆ่งฃ
# ============================================================================
print("\n" + "=" * 80)
print("๐ค Part 2: Embedding ๆจกๅ - HuggingFaceEmbeddings")
print("=" * 80)
print("""
ไฝ ็้กน็ฎ้
็ฝฎ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
self.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': device}, # CPU ๆ GPU
encode_kwargs={'normalize_embeddings': True} # ๅฝไธๅ
)
ๆจกๅ่ฏดๆ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ๆจกๅๅ็งฐ: all-MiniLM-L6-v2
โโ ็ฑปๅ: Sentence-BERT (ๅ็ผ็ ๅจ)
โโ ๅๆฐ้: 22M (่ฝป้็บง)
โโ ่พๅบ็ปดๅบฆ: 384 ็ปดๅ้
โโ ่ฎญ็ปๆฐๆฎ: 10ไบฟ+ ๅฅๅญๅฏน
โโ ็น็น: ๅฟซ้ใๅ็กฎใ้ๅ่ฏญไนๆฃ็ดข
ๅทฅไฝๅ็๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
่พๅ
ฅๆๆฌ: "ไบบๅทฅๆบ่ฝๆฏ่ฎก็ฎๆบ็งๅญฆ็ไธไธชๅๆฏ"
โ
Tokenization (ๅ่ฏ)
โ
Token IDs: [101, 782, 1435, 1819, 2510, 3221, ...]
โ
BERT Encoder (6 ๅฑ Transformer)
โ
[CLS] Token ็ๅ้่กจ็คบ
โ
384 ็ปดๅ้: [0.123, -0.456, 0.789, ...]
โ
L2 ๅฝไธๅ (normalize_embeddings=True)
โ
ๆ็ปๅ้: ||v|| = 1 (ๅไฝๅ้)
""")
# ============================================================================
# Part 3: ๅ้ๅ่ฟ็จๅๆญฅ่งฃๆ
# ============================================================================
print("\n" + "=" * 80)
print("๐ Part 3: ๅ้ๅ่ฟ็จ - ้ๆญฅ่งฃๆ")
print("=" * 80)
print("""
ๅ่ฎพๆไปฌๆ 3 ไธช chunks๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Chunk 1: "ไบบๅทฅๆบ่ฝๆฏ่ฎก็ฎๆบ็งๅญฆ็ไธไธชๅๆฏใๅฎ่ดๅไบ..."
Chunk 2: "ๆบๅจๅญฆไน ๆฏไบบๅทฅๆบ่ฝ็ๅญ้ขๅใๅฎไฝฟ่ฎก็ฎๆบ..."
Chunk 3: "ๆทฑๅบฆๅญฆไน ไฝฟ็จๅคๅฑ็ฅ็ป็ฝ็ปๆฅๅค็ๅคๆ็..."
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ๅ้ๅ่ฟ็จ๏ผๆน้ๅค็๏ผ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
embeddings.embed_documents([chunk1, chunk2, chunk3])
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ HuggingFace Embedding ๆจกๅ โ
โ (sentence-transformers/all-MiniLM-L6-v2) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
ๅ
้จๅค็๏ผๆฏไธช chunk๏ผ๏ผ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Step 1: Tokenization โ
โ "ไบบๅทฅๆบ่ฝ..." โ [101, 782, 1435, ...] โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Step 2: ่ฝฌๆขไธบ Token Embeddings โ
โ Token IDs โ ๅๅงๅ้่กจ็คบ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Step 3: BERT Encoder (6 ๅฑ) โ
โ Self-Attention + Feed Forward โ
โ ๆฏๅฑๆๅๆดๆทฑๅฑ็่ฏญไน โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Step 4: Mean Pooling โ
โ ๆๆ token ๅ้็ๅนณๅ โ ๅฅๅญๅ้ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Step 5: L2 Normalization โ
โ ๅ้ๅฝไธๅๅฐๅไฝ้ฟๅบฆ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
่พๅบ๏ผ3 ไธชๅ้
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Vector 1: [0.123, -0.456, 0.789, ..., 0.321] (384็ปด) โ
โ Vector 2: [0.234, 0.567, -0.890, ..., 0.432] (384็ปด) โ
โ Vector 3: [-0.345, 0.678, 0.901, ..., -0.543] (384็ปด) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ๅ
ณ้ฎ็น๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
ๆฏไธช chunk โ 1 ไธชๅบๅฎ็ปดๅบฆ็ๅ้ (384็ปด)
โ
่ฏญไน็ธไผผ็ๆๆฌ โ ๅ้่ท็ฆป่ฟ
โ
ๅฝไธๅๅๅฏ็จไฝๅผฆ็ธไผผๅบฆๅฟซ้ๆฏ่พ
""")
# ============================================================================
# Part 4: Chroma ๆฐๆฎๅบๅญๅจ็ปๆ
# ============================================================================
print("\n" + "=" * 80)
print("๐พ Part 4: Chroma ๆฐๆฎๅบๅญๅจ็ปๆ")
print("=" * 80)
print("""
Chroma.from_documents() ๆง่ก็ๆไฝ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Chroma.from_documents(
documents=doc_splits, # 20 ไธช chunks
collection_name="rag-chroma", # ้ๅๅ็งฐ
embedding=self.embeddings # Embedding ๅฝๆฐ
)
ๅ
้จๆต็จ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Step 1: ๅๅปบ/ๆๅผ้ๅ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Collection: "rag-chroma" โ
โ ๅ
ๆฐๆฎ: embedding_dimension=384 โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Step 2: ๆน้ๅ้ๅ
for chunk in doc_splits:
vector = embeddings.embed_documents([chunk.page_content])
โ
Step 3: ๅญๅจๆฐๆฎ๏ผๆฏไธช chunk๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ID: "chunk_1" โ
โ โโ Vector: [0.123, -0.456, ..., 0.321] (384็ปด) โ
โ โโ Document: "ไบบๅทฅๆบ่ฝๆฏ่ฎก็ฎๆบ็งๅญฆ็ไธไธชๅๆฏ..." โ
โ โโ Metadata: { โ
โ "source": "https://...", โ
โ "chunk_index": 0, โ
โ "total_chunks": 20 โ
โ } โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ ID: "chunk_2" โ
โ โโ Vector: [0.234, 0.567, ..., 0.432] โ
โ โโ Document: "ๆบๅจๅญฆไน ๆฏไบบๅทฅๆบ่ฝ็ๅญ้ขๅ..." โ
โ โโ Metadata: {...} โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ ID: "chunk_3" โ
โ โโ Vector: [-0.345, 0.678, ..., -0.543] โ
โ โโ Document: "ๆทฑๅบฆๅญฆไน ไฝฟ็จๅคๅฑ็ฅ็ป็ฝ็ป..." โ
โ โโ Metadata: {...} โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Step 4: ๆๅปบ HNSW ็ดขๅผ
ๅ้ โ HNSW ๅพ็ปๆ โ ๅฟซ้ๆฃ็ดข
(ๅฑๆฌกๅๅฏผ่ชๅฐไธ็ๅพ)
ๅญๅจไฝ็ฝฎ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
้ป่ฎค่ทฏๅพ: ./chroma/ (ๆฌๅฐ็ฎๅฝ)
โโ collections/
โ โโ rag-chroma/
โ โโ data.parquet # ๅ้ๆฐๆฎ
โ โโ metadata.json # ๅ
ๆฐๆฎ
โ โโ index.bin # HNSW ็ดขๅผ
โโ chroma.sqlite3 # SQLite ๆฐๆฎๅบ
""")
# ============================================================================
# Part 5: HNSW ็ดขๅผๅทฅไฝๅ็
# ============================================================================
print("\n" + "=" * 80)
print("๐ Part 5: HNSW ็ดขๅผ - ๅฟซ้ๆฃ็ดข็็งๅฏ")
print("=" * 80)
print("""
HNSW = Hierarchical Navigable Small World
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ไธบไปไน้่ฆ็ดขๅผ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ๆดๅๆ็ดข: O(n) - ่ฎก็ฎๆฅ่ฏขๅ้ไธๆๆๅ้็่ท็ฆป
โโ 10000 ไธชๅ้ โ ้่ฆ่ฎก็ฎ 10000 ๆฌก่ท็ฆป
โโ ๅคชๆ
ข๏ผ
HNSW ็ดขๅผ: O(log n) - ๅฑๆฌกๅๅพ็ปๆๅฏผ่ช
โโ 10000 ไธชๅ้ โ ๅช้ๆฃๆฅ็บฆ 20-30 ไธช่็น
โโ ๅฟซ 100+ ๅ๏ผ
HNSW ็ปๆ๏ผ็ฎๅ็คบไพ๏ผ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Layer 2 (ๆ็จ็)
Vโ โโโโโโโโ Vโ
โโโโโโโโ Vโโ
โ โ โ
Layer 1
Vโ โโ Vโ โโ Vโ
โโ Vโ โโ Vโโ
โ โ โ โ โ
Layer 0 (ๆๅฏ้)
Vโ โ Vโ โ Vโ โ Vโ โ Vโ
โ Vโ โ ... โ Vโโ
ๆๆๅ้้ฝๅจ่ฟไธๅฑ
ๆฃ็ดข่ฟ็จ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ๆฅ่ฏขๅ้: Q = [0.2, -0.3, 0.5, ...]
Step 1: ไป Layer 2 ๅผๅง๏ผ็ฒ็ฅๆ็ดข๏ผ
ๅ
ฅๅฃ็น: Vโ
โ ่ฎก็ฎ dist(Q, Vโ), dist(Q, Vโ
), dist(Q, Vโโ)
โ Vโ
ๆ่ฟ โ ่ทณๅฐ Vโ
Step 2: ไธ้ๅฐ Layer 1๏ผไธญ็ญ็ฒพๅบฆ๏ผ
ไป Vโ
ๅผๅง
โ ๆฃๆฅ้ปๅฑ
Vโ, Vโ
โ Vโ ๆ่ฟ โ ่ทณๅฐ Vโ
Step 3: ไธ้ๅฐ Layer 0๏ผ้ซ็ฒพๅบฆ๏ผ
ไป Vโ ๅผๅง
โ ๆฃๆฅๆๆ้ปๅฑ
โ ๆพๅฐๆ่ฟ็ K ไธชๅ้
่ฟๅ็ปๆ: Top K ๆ็ธไผผ็ chunks
้ๅบฆๅฏนๆฏ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ๆดๅๆ็ดข: 10000 ๆฌก่ท็ฆป่ฎก็ฎ โ 100ms
HNSW ็ดขๅผ: 20-30 ๆฌก่ท็ฆป่ฎก็ฎ โ 1ms โ ๅฟซ 100 ๅ๏ผ
""")
# ============================================================================
# Part 6: ๆฃ็ดข่ฟ็จ่ฏฆ่งฃ
# ============================================================================
print("\n" + "=" * 80)
print("๐ Part 6: ๆฃ็ดข่ฟ็จ - ไปๆฅ่ฏขๅฐ็ปๆ")
print("=" * 80)
print("""
็จๆทๆฅ่ฏข: "ไปไนๆฏๆบๅจๅญฆไน ๏ผ"
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Step 1: ๆฅ่ฏขๅ้ๅ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
"ไปไนๆฏๆบๅจๅญฆไน ๏ผ"
โ
embeddings.embed_query("ไปไนๆฏๆบๅจๅญฆไน ๏ผ")
โ
Query Vector: [0.345, -0.678, 0.234, ...] (384็ปด)
Step 2: HNSW ่ฟไผผๆ็ดข
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
vectorstore.similarity_search(
query="ไปไนๆฏๆบๅจๅญฆไน ๏ผ",
k=20 # ่ฟๅ Top 20
)
โ
Chroma ๅ
้จ:
1. ๆฅ่ฏขๅ้ๅ
2. HNSW ๅพๅฏผ่ช
3. ่ฎก็ฎไฝๅผฆ็ธไผผๅบฆ
โ
่ฟๅ Top 20 chunks:
โโโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Chunk ID โ Score โ Content โ
โโโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ chunk_5 โ 0.92 โ "ๆบๅจๅญฆไน ๆฏไบบๅทฅๆบ่ฝ็..." โ
โ chunk_2 โ 0.88 โ "ไบบๅทฅๆบ่ฝๅ
ๆฌๆบๅจๅญฆไน ..." โ
โ chunk_11 โ 0.85 โ "็็ฃๅญฆไน ๆฏๆบๅจๅญฆไน ..." โ
โ ... โ ... โ ... โ
โโโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Step 3: CrossEncoder ้ๆ๏ผไฝ ็้กน็ฎ็น่ฒ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
reranker.rerank(query, top_20_chunks, top_k=5)
โ
ๆฏไธช chunk ้ๆฐๆๅ๏ผๆทฑๅบฆไบคไบ๏ผ
โ
ๆ็ป Top 5:
โโโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Chunk ID โ Score โ Content โ
โโโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ chunk_5 โ 8.45 โ "ๆบๅจๅญฆไน ๆฏไบบๅทฅๆบ่ฝ็..." โ
โ chunk_11 โ 7.89 โ "็็ฃๅญฆไน ๆฏๆบๅจๅญฆไน ..." โ
โ chunk_2 โ 7.23 โ "ไบบๅทฅๆบ่ฝๅ
ๆฌๆบๅจๅญฆไน ..." โ
โ chunk_14 โ 6.78 โ "ๆทฑๅบฆๅญฆไน ๆฏๆบๅจๅญฆไน ..." โ
โ chunk_8 โ 6.12 โ "ๅผบๅๅญฆไน ๅ
่ฎธ..." โ
โโโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Step 4: ่ฟๅ็ป LLM
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
context = "\\n\\n".join([chunk.page_content for chunk in top_5])
โ
LLM ็ๆ็ญๆก
""")
# ============================================================================
# Part 7: ๅ
ณ้ฎๆๆฏ็ป่
# ============================================================================
print("\n" + "=" * 80)
print("โ๏ธ Part 7: ๅ
ณ้ฎๆๆฏ็ป่")
print("=" * 80)
print("""
1. ไธบไปไน่ฆๅฝไธๅๅ้๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
encode_kwargs={'normalize_embeddings': True}
ๅๅงๅ้: [1.23, -4.56, 7.89, ...] # ้ฟๅบฆไธไธ
ๅฝไธๅๅ: [0.12, -0.45, 0.78, ...] # ้ฟๅบฆ = 1
ๅฅฝๅค:
โ
ไฝๅผฆ็ธไผผๅบฆ = ็น็งฏ๏ผ่ฎก็ฎๆดๅฟซ๏ผ
โ
ๆๆๅ้ๅจๅไธๅฐบๅบฆไธ
โ
้ฟๅ
้ฟๅบฆๅฝฑๅ็ธไผผๅบฆ่ฎก็ฎ
2. ไฝๅผฆ็ธไผผๅบฆ vs ๆฌงๆฐ่ท็ฆป
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ไฝๅผฆ็ธไผผๅบฆ๏ผไฝ ็้กน็ฎไฝฟ็จ๏ผโญ:
similarity = vโ ยท vโ / (||vโ|| ร ||vโ||)
่ๅด: [-1, 1]๏ผ1 ่กจ็คบๅฎๅ
จ็ธๅ
็น็น: ๅ
ณๆณจๆนๅ๏ผๅฟฝ็ฅ้ฟๅบฆ
ๆฌงๆฐ่ท็ฆป:
distance = โฮฃ(vโแตข - vโแตข)ยฒ
่ๅด: [0, โ]๏ผ0 ่กจ็คบๅฎๅ
จ็ธๅ
็น็น: ๅ
ณๆณจ็ปๅฏนไฝ็ฝฎๅทฎๅผ
ๅฝไธๅๅ๏ผไธค่
็ญไปท๏ผ
3. ๆน้ๅค็ไผๅ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ไธๆจ่๏ผๆ
ข๏ผ:
for chunk in chunks:
vector = embed_documents([chunk]) # ๅ็ฌๅค็
ๆจ่๏ผๅฟซ 10 ๅ๏ผโญ:
vectors = embed_documents(chunks) # ๆน้ๅค็
โโ GPU ๅนถ่ก่ฎก็ฎ
โโ ๅๅฐๆจกๅๅ ่ฝฝๅผ้
4. ๅ
ๅญไผๅ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ๅ้็ปดๅบฆ้ๆฉ:
384 ็ปด (all-MiniLM-L6-v2) โ ไฝ ็้กน็ฎ โญ
โโ ๅนณ่กก๏ผๅ็กฎ็ vs ๅญๅจ
768 ็ปด (BERT-base)
โโ ๆดๅ็กฎไฝๅญๅจ็ฟปๅ
1024 ็ปด (large models)
โโ ๆๅ็กฎไฝๅญๅจ 3 ๅ
ๅญๅจ่ฎก็ฎ:
20 ไธช chunks ร 384 ็ปด ร 4 bytes = 30KB
1000 ไธช chunks ร 384 ็ปด ร 4 bytes = 1.5MB
โโ ้ๅธธ้ซๆ๏ผ
""")
# ============================================================================
# Part 8: ๅฎๆดไปฃ็ ๆต็จ
# ============================================================================
print("\n" + "=" * 80)
print("๐ป Part 8: ๅฎๆดไปฃ็ ๆต็จๆป็ป")
print("=" * 80)
print("""
ไฝ ็้กน็ฎๅฎๆดๆต็จ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# 1. ๅๅงๅ Embedding ๆจกๅ
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
# 2. ๆๆกฃๅๅฒ
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=250,
chunk_overlap=50 # โ ไฝ ๅไฟฎๆน็
)
doc_splits = text_splitter.split_documents(docs)
# 3. ๅ้ๅ + ๅญๅจๅฐ Chroma
vectorstore = Chroma.from_documents(
documents=doc_splits, # ่พๅ
ฅ: 20 ไธช chunks
collection_name="rag-chroma",
embedding=embeddings # ๅ้ๅๅฝๆฐ
)
# โ ๅ
้จ่ชๅจๅฎๆ:
# - ๆน้ๅ้ๅ: chunks โ 384็ปดๅ้
# - ๅญๅจ: ๅ้ + ๅๆ + ๅ
ๆฐๆฎ
# - ๆๅปบ HNSW ็ดขๅผ
# 4. ๅๅปบๆฃ็ดขๅจ
retriever = vectorstore.as_retriever()
# 5. ๆฃ็ดข
docs = retriever.get_relevant_documents("ไปไนๆฏๆบๅจๅญฆไน ๏ผ")
# โ ๅ
้จๆต็จ:
# - ๆฅ่ฏขๅ้ๅ
# - HNSW ๅฟซ้ๆฃ็ดข
# - ่ฟๅ Top K chunks
# 6. CrossEncoder ้ๆ๏ผๅฏ้๏ผไฝ ็้กน็ฎๆ๏ผ
reranked = crossencoder.rerank(query, docs, top_k=5)
# 7. ๅ็ป LLM ็ๆ็ญๆก
answer = llm.generate(context=docs, question=query)
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
""")
# ============================================================================
# Part 9: ๆง่ฝไผๅๅปบ่ฎฎ
# ============================================================================
print("\n" + "=" * 80)
print("๐ Part 9: ๆง่ฝไผๅๅปบ่ฎฎ")
print("=" * 80)
print("""
ๅฝๅ้
็ฝฎ่ฏๅ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
Embedding ๆจกๅ: all-MiniLM-L6-v2 (่ฝป้้ซๆ) โญโญโญโญโญ
โ
ๅ้ๅฝไธๅ: True (ไฝๅผฆ็ธไผผๅบฆไผๅ) โญโญโญโญโญ
โ
็ดขๅผ็ฑปๅ: HNSW (ๅฟซ้ๆฃ็ดข) โญโญโญโญโญ
โ
Chunk overlap: 50 (ไฟๆไธไธๆ) โญโญโญโญโญ
โ
CrossEncoder ้ๆ (็ฒพๅๆๅบ) โญโญโญโญโญ
ๆป่ฏ: ๐ ็ไบง็บง้
็ฝฎ๏ผ
ๅฏ้ไผๅ๏ผๅฆ้่ฟไธๆญฅๆๅ๏ผ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
1. GPU ๅ ้
model_kwargs={'device': 'cuda'} # ๅ้ๅ้ๅบฆ 10x โ
2. ๆดๅคง็ Embedding ๆจกๅ๏ผๅฆ้ๆด้ซๅ็กฎ็๏ผ
"BAAI/bge-large-en-v1.5" # 1024็ปด๏ผๅ็กฎ็ +5%
3. ๆน้ๅคงๅฐ่ฐๆด
batch_size=32 # ๅ ๅฟซๅ้ๅ
4. Chroma ๆไน
ๅ้
็ฝฎ
persist_directory="./chroma_db" # ้ฟๅ
้ๅคๅ้ๅ
""")
print("\n" + "=" * 80)
print("โ
่งฃๆๅฎๆ๏ผไฝ ็ฐๅจ็่งฃไบไปๅๅฒๅฐๅ้ๆฐๆฎๅบ็ๅฎๆดๆต็จ")
print("=" * 80)
print()
|