File size: 23,169 Bytes
dbd527a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
"""
ๅ‘้‡ๅŒ–ๅ’Œ Chroma ๅญ˜ๅ‚จ่ฟ‡็จ‹่ฏฆ่งฃ
ไปŽๅˆ‡ๅ‰ฒๅŽ็š„ๆ–‡ๆกฃๅˆฐๅ‘้‡ๆ•ฐๆฎๅบ“็š„ๅฎŒๆ•ดๆต็จ‹
"""

print("=" * 80)
print("ๅ‘้‡ๅŒ–ๅ’Œ Chroma ๅญ˜ๅ‚จ่ฟ‡็จ‹่ฏฆ่งฃ")
print("=" * 80)

# ============================================================================
# Part 1: ๅฎŒๆ•ดๆต็จ‹ๆฆ‚่งˆ
# ============================================================================
print("\n" + "=" * 80)
print("๐Ÿ“Š Part 1: ๅฎŒๆ•ดๆต็จ‹ๆฆ‚่งˆ")
print("=" * 80)

print("""
ไปŽๆ–‡ๆกฃๅˆ‡ๅ‰ฒๅˆฐๅ‘้‡ๆ•ฐๆฎๅบ“็š„ๅฎŒๆ•ดๆต็จ‹๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

Step 1: ๆ–‡ๆกฃๅˆ‡ๅ‰ฒ
ๅŽŸๅง‹ๆ–‡ๆกฃ โ†’ RecursiveCharacterTextSplitter โ†’ 20 ไธช chunks
        (5000 tokens)                         (ๆฏไธช 250 tokens)

Step 2: ๅ‘้‡ๅŒ– (Embedding)
ๆฏไธช chunk โ†’ HuggingFace ๆจกๅž‹ โ†’ ๅ‘้‡ (384็ปด)
   "ไบบๅทฅๆ™บ่ƒฝๆ˜ฏ..."  โ†’  [0.12, -0.34, 0.56, ...]

Step 3: ๅญ˜ๅ…ฅ Chroma
ๅ‘้‡ + ๅŽŸๆ–‡ + ๅ…ƒๆ•ฐๆฎ โ†’ Chroma ๆ•ฐๆฎๅบ“
                      โ””โ”€ ๆŒไน…ๅŒ–ๅญ˜ๅ‚จ

Step 4: ๆž„ๅปบ็ดขๅผ•
Chroma โ†’ HNSW ็ดขๅผ• โ†’ ๅฟซ้€Ÿ่ฟ‘ไผผๆฃ€็ดข
        (ๅฑ‚ๆฌกๅŒ–ๅ›พ็ป“ๆž„)

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
""")


# ============================================================================
# Part 2: Embedding ๆจกๅž‹่ฏฆ่งฃ
# ============================================================================
print("\n" + "=" * 80)
print("๐Ÿค– Part 2: Embedding ๆจกๅž‹ - HuggingFaceEmbeddings")
print("=" * 80)

print("""
ไฝ ็š„้กน็›ฎ้…็ฝฎ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

self.embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-MiniLM-L6-v2",
    model_kwargs={'device': device},  # CPU ๆˆ– GPU
    encode_kwargs={'normalize_embeddings': True}  # ๅฝ’ไธ€ๅŒ–
)

ๆจกๅž‹่ฏดๆ˜Ž๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ๆจกๅž‹ๅ็งฐ: all-MiniLM-L6-v2
โ”œโ”€ ็ฑปๅž‹: Sentence-BERT (ๅŒ็ผ–็ ๅ™จ)
โ”œโ”€ ๅ‚ๆ•ฐ้‡: 22M (่ฝป้‡็บง)
โ”œโ”€ ่พ“ๅ‡บ็ปดๅบฆ: 384 ็ปดๅ‘้‡
โ”œโ”€ ่ฎญ็ปƒๆ•ฐๆฎ: 10ไบฟ+ ๅฅๅญๅฏน
โ””โ”€ ็‰น็‚น: ๅฟซ้€Ÿใ€ๅ‡†็กฎใ€้€‚ๅˆ่ฏญไน‰ๆฃ€็ดข

ๅทฅไฝœๅŽŸ็†๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

่พ“ๅ…ฅๆ–‡ๆœฌ: "ไบบๅทฅๆ™บ่ƒฝๆ˜ฏ่ฎก็ฎ—ๆœบ็ง‘ๅญฆ็š„ไธ€ไธชๅˆ†ๆ”ฏ"
    โ†“
Tokenization (ๅˆ†่ฏ)
    โ†“
Token IDs: [101, 782, 1435, 1819, 2510, 3221, ...]
    โ†“
BERT Encoder (6 ๅฑ‚ Transformer)
    โ†“
[CLS] Token ็š„ๅ‘้‡่กจ็คบ
    โ†“
384 ็ปดๅ‘้‡: [0.123, -0.456, 0.789, ...]
    โ†“
L2 ๅฝ’ไธ€ๅŒ– (normalize_embeddings=True)
    โ†“
ๆœ€็ปˆๅ‘้‡: ||v|| = 1 (ๅ•ไฝๅ‘้‡)
""")


# ============================================================================
# Part 3: ๅ‘้‡ๅŒ–่ฟ‡็จ‹ๅˆ†ๆญฅ่งฃๆž
# ============================================================================
print("\n" + "=" * 80)
print("๐Ÿ” Part 3: ๅ‘้‡ๅŒ–่ฟ‡็จ‹ - ้€ๆญฅ่งฃๆž")
print("=" * 80)

print("""
ๅ‡่ฎพๆˆ‘ไปฌๆœ‰ 3 ไธช chunks๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

Chunk 1: "ไบบๅทฅๆ™บ่ƒฝๆ˜ฏ่ฎก็ฎ—ๆœบ็ง‘ๅญฆ็š„ไธ€ไธชๅˆ†ๆ”ฏใ€‚ๅฎƒ่‡ดๅŠ›ไบŽ..."
Chunk 2: "ๆœบๅ™จๅญฆไน ๆ˜ฏไบบๅทฅๆ™บ่ƒฝ็š„ๅญ้ข†ๅŸŸใ€‚ๅฎƒไฝฟ่ฎก็ฎ—ๆœบ..."
Chunk 3: "ๆทฑๅบฆๅญฆไน ไฝฟ็”จๅคšๅฑ‚็ฅž็ป็ฝ‘็ปœๆฅๅค„็†ๅคๆ‚็š„..."

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ๅ‘้‡ๅŒ–่ฟ‡็จ‹๏ผˆๆ‰น้‡ๅค„็†๏ผ‰๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

embeddings.embed_documents([chunk1, chunk2, chunk3])
                    โ†“
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚         HuggingFace Embedding ๆจกๅž‹                        โ”‚
โ”‚         (sentence-transformers/all-MiniLM-L6-v2)         โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                    โ†“
        ๅ†…้ƒจๅค„็†๏ผˆๆฏไธช chunk๏ผ‰๏ผš
                    โ†“
    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
    โ”‚ Step 1: Tokenization                  โ”‚
    โ”‚ "ไบบๅทฅๆ™บ่ƒฝ..." โ†’ [101, 782, 1435, ...] โ”‚
    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                    โ†“
    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
    โ”‚ Step 2: ่ฝฌๆขไธบ Token Embeddings       โ”‚
    โ”‚ Token IDs โ†’ ๅˆๅง‹ๅ‘้‡่กจ็คบ               โ”‚
    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                    โ†“
    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
    โ”‚ Step 3: BERT Encoder (6 ๅฑ‚)          โ”‚
    โ”‚ Self-Attention + Feed Forward         โ”‚
    โ”‚ ๆฏๅฑ‚ๆๅ–ๆ›ดๆทฑๅฑ‚็š„่ฏญไน‰                  โ”‚
    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                    โ†“
    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
    โ”‚ Step 4: Mean Pooling                  โ”‚
    โ”‚ ๆ‰€ๆœ‰ token ๅ‘้‡็š„ๅนณๅ‡ โ†’ ๅฅๅญๅ‘้‡      โ”‚
    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                    โ†“
    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
    โ”‚ Step 5: L2 Normalization              โ”‚
    โ”‚ ๅ‘้‡ๅฝ’ไธ€ๅŒ–ๅˆฐๅ•ไฝ้•ฟๅบฆ                  โ”‚
    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                    โ†“
        ่พ“ๅ‡บ๏ผš3 ไธชๅ‘้‡
                    โ†“
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Vector 1: [0.123, -0.456, 0.789, ..., 0.321]  (384็ปด)  โ”‚
โ”‚ Vector 2: [0.234, 0.567, -0.890, ..., 0.432]  (384็ปด)  โ”‚
โ”‚ Vector 3: [-0.345, 0.678, 0.901, ..., -0.543] (384็ปด)  โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

ๅ…ณ้”ฎ็‚น๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
โœ… ๆฏไธช chunk โ†’ 1 ไธชๅ›บๅฎš็ปดๅบฆ็š„ๅ‘้‡ (384็ปด)
โœ… ่ฏญไน‰็›ธไผผ็š„ๆ–‡ๆœฌ โ†’ ๅ‘้‡่ท็ฆป่ฟ‘
โœ… ๅฝ’ไธ€ๅŒ–ๅŽๅฏ็”จไฝ™ๅผฆ็›ธไผผๅบฆๅฟซ้€Ÿๆฏ”่พƒ
""")


# ============================================================================
# Part 4: Chroma ๆ•ฐๆฎๅบ“ๅญ˜ๅ‚จ็ป“ๆž„
# ============================================================================
print("\n" + "=" * 80)
print("๐Ÿ’พ Part 4: Chroma ๆ•ฐๆฎๅบ“ๅญ˜ๅ‚จ็ป“ๆž„")
print("=" * 80)

print("""
Chroma.from_documents() ๆ‰ง่กŒ็š„ๆ“ไฝœ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

Chroma.from_documents(
    documents=doc_splits,          # 20 ไธช chunks
    collection_name="rag-chroma",  # ้›†ๅˆๅ็งฐ
    embedding=self.embeddings      # Embedding ๅ‡ฝๆ•ฐ
)

ๅ†…้ƒจๆต็จ‹๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

Step 1: ๅˆ›ๅปบ/ๆ‰“ๅผ€้›†ๅˆ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Collection: "rag-chroma"             โ”‚
โ”‚ ๅ…ƒๆ•ฐๆฎ: embedding_dimension=384     โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Step 2: ๆ‰น้‡ๅ‘้‡ๅŒ–
for chunk in doc_splits:
    vector = embeddings.embed_documents([chunk.page_content])
    โ†“

Step 3: ๅญ˜ๅ‚จๆ•ฐๆฎ๏ผˆๆฏไธช chunk๏ผ‰
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ ID: "chunk_1"                                           โ”‚
โ”‚ โ”œโ”€ Vector: [0.123, -0.456, ..., 0.321]  (384็ปด)        โ”‚
โ”‚ โ”œโ”€ Document: "ไบบๅทฅๆ™บ่ƒฝๆ˜ฏ่ฎก็ฎ—ๆœบ็ง‘ๅญฆ็š„ไธ€ไธชๅˆ†ๆ”ฏ..."       โ”‚
โ”‚ โ””โ”€ Metadata: {                                          โ”‚
โ”‚      "source": "https://...",                           โ”‚
โ”‚      "chunk_index": 0,                                  โ”‚
โ”‚      "total_chunks": 20                                 โ”‚
โ”‚    }                                                    โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ID: "chunk_2"                                           โ”‚
โ”‚ โ”œโ”€ Vector: [0.234, 0.567, ..., 0.432]                  โ”‚
โ”‚ โ”œโ”€ Document: "ๆœบๅ™จๅญฆไน ๆ˜ฏไบบๅทฅๆ™บ่ƒฝ็š„ๅญ้ข†ๅŸŸ..."           โ”‚
โ”‚ โ””โ”€ Metadata: {...}                                      โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ID: "chunk_3"                                           โ”‚
โ”‚ โ”œโ”€ Vector: [-0.345, 0.678, ..., -0.543]                โ”‚
โ”‚ โ”œโ”€ Document: "ๆทฑๅบฆๅญฆไน ไฝฟ็”จๅคšๅฑ‚็ฅž็ป็ฝ‘็ปœ..."             โ”‚
โ”‚ โ””โ”€ Metadata: {...}                                      โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Step 4: ๆž„ๅปบ HNSW ็ดขๅผ•
ๅ‘้‡ โ†’ HNSW ๅ›พ็ป“ๆž„ โ†’ ๅฟซ้€Ÿๆฃ€็ดข
      (ๅฑ‚ๆฌกๅŒ–ๅฏผ่ˆชๅฐไธ–็•Œๅ›พ)

ๅญ˜ๅ‚จไฝ็ฝฎ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
้ป˜่ฎค่ทฏๅพ„: ./chroma/  (ๆœฌๅœฐ็›ฎๅฝ•)
โ”œโ”€ collections/
โ”‚  โ””โ”€ rag-chroma/
โ”‚     โ”œโ”€ data.parquet      # ๅ‘้‡ๆ•ฐๆฎ
โ”‚     โ”œโ”€ metadata.json     # ๅ…ƒๆ•ฐๆฎ
โ”‚     โ””โ”€ index.bin         # HNSW ็ดขๅผ•
โ””โ”€ chroma.sqlite3          # SQLite ๆ•ฐๆฎๅบ“
""")


# ============================================================================
# Part 5: HNSW ็ดขๅผ•ๅทฅไฝœๅŽŸ็†
# ============================================================================
print("\n" + "=" * 80)
print("๐Ÿ”— Part 5: HNSW ็ดขๅผ• - ๅฟซ้€Ÿๆฃ€็ดข็š„็ง˜ๅฏ†")
print("=" * 80)

print("""
HNSW = Hierarchical Navigable Small World
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ไธบไป€ไนˆ้œ€่ฆ็ดขๅผ•๏ผŸ
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
ๆšดๅŠ›ๆœ็ดข: O(n) - ่ฎก็ฎ—ๆŸฅ่ฏขๅ‘้‡ไธŽๆ‰€ๆœ‰ๅ‘้‡็š„่ท็ฆป
  โ””โ”€ 10000 ไธชๅ‘้‡ โ†’ ้œ€่ฆ่ฎก็ฎ— 10000 ๆฌก่ท็ฆป
  โ””โ”€ ๅคชๆ…ข๏ผ

HNSW ็ดขๅผ•: O(log n) - ๅฑ‚ๆฌกๅŒ–ๅ›พ็ป“ๆž„ๅฏผ่ˆช
  โ””โ”€ 10000 ไธชๅ‘้‡ โ†’ ๅช้œ€ๆฃ€ๆŸฅ็บฆ 20-30 ไธช่Š‚็‚น
  โ””โ”€ ๅฟซ 100+ ๅ€๏ผ

HNSW ็ป“ๆž„๏ผˆ็ฎ€ๅŒ–็คบไพ‹๏ผ‰๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

Layer 2 (ๆœ€็จ€็–)
  Vโ‚ โ†โ”€โ”€โ”€โ”€โ”€โ”€โ†’ Vโ‚… โ†โ”€โ”€โ”€โ”€โ”€โ”€โ†’ Vโ‚โ‚‚
   โ†“           โ†“           โ†“

Layer 1
  Vโ‚ โ†โ†’ Vโ‚ƒ โ†โ†’ Vโ‚… โ†โ†’ Vโ‚ˆ โ†โ†’ Vโ‚โ‚‚
   โ†“     โ†“     โ†“     โ†“     โ†“

Layer 0 (ๆœ€ๅฏ†้›†)
  Vโ‚ โ† Vโ‚‚ โ† Vโ‚ƒ โ† Vโ‚„ โ† Vโ‚… โ† Vโ‚† โ† ... โ† Vโ‚โ‚‚
  ๆ‰€ๆœ‰ๅ‘้‡้ƒฝๅœจ่ฟ™ไธ€ๅฑ‚

ๆฃ€็ดข่ฟ‡็จ‹๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ๆŸฅ่ฏขๅ‘้‡: Q = [0.2, -0.3, 0.5, ...]

Step 1: ไปŽ Layer 2 ๅผ€ๅง‹๏ผˆ็ฒ—็•ฅๆœ็ดข๏ผ‰
  ๅ…ฅๅฃ็‚น: Vโ‚
  โ†’ ่ฎก็ฎ— dist(Q, Vโ‚), dist(Q, Vโ‚…), dist(Q, Vโ‚โ‚‚)
  โ†’ Vโ‚… ๆœ€่ฟ‘ โ†’ ่ทณๅˆฐ Vโ‚…

Step 2: ไธ‹้™ๅˆฐ Layer 1๏ผˆไธญ็ญ‰็ฒพๅบฆ๏ผ‰
  ไปŽ Vโ‚… ๅผ€ๅง‹
  โ†’ ๆฃ€ๆŸฅ้‚ปๅฑ… Vโ‚ƒ, Vโ‚ˆ
  โ†’ Vโ‚ˆ ๆœ€่ฟ‘ โ†’ ่ทณๅˆฐ Vโ‚ˆ

Step 3: ไธ‹้™ๅˆฐ Layer 0๏ผˆ้ซ˜็ฒพๅบฆ๏ผ‰
  ไปŽ Vโ‚ˆ ๅผ€ๅง‹
  โ†’ ๆฃ€ๆŸฅๆ‰€ๆœ‰้‚ปๅฑ…
  โ†’ ๆ‰พๅˆฐๆœ€่ฟ‘็š„ K ไธชๅ‘้‡

่ฟ”ๅ›ž็ป“ๆžœ: Top K ๆœ€็›ธไผผ็š„ chunks

้€Ÿๅบฆๅฏนๆฏ”๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
ๆšดๅŠ›ๆœ็ดข: 10000 ๆฌก่ท็ฆป่ฎก็ฎ— โ†’ 100ms
HNSW ็ดขๅผ•: 20-30 ๆฌก่ท็ฆป่ฎก็ฎ— โ†’ 1ms  โ† ๅฟซ 100 ๅ€๏ผ
""")


# ============================================================================
# Part 6: ๆฃ€็ดข่ฟ‡็จ‹่ฏฆ่งฃ
# ============================================================================
print("\n" + "=" * 80)
print("๐Ÿ” Part 6: ๆฃ€็ดข่ฟ‡็จ‹ - ไปŽๆŸฅ่ฏขๅˆฐ็ป“ๆžœ")
print("=" * 80)

print("""
็”จๆˆทๆŸฅ่ฏข: "ไป€ไนˆๆ˜ฏๆœบๅ™จๅญฆไน ๏ผŸ"
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

Step 1: ๆŸฅ่ฏขๅ‘้‡ๅŒ–
โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
"ไป€ไนˆๆ˜ฏๆœบๅ™จๅญฆไน ๏ผŸ"
    โ†“
embeddings.embed_query("ไป€ไนˆๆ˜ฏๆœบๅ™จๅญฆไน ๏ผŸ")
    โ†“
Query Vector: [0.345, -0.678, 0.234, ...]  (384็ปด)


Step 2: HNSW ่ฟ‘ไผผๆœ็ดข
โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
vectorstore.similarity_search(
    query="ไป€ไนˆๆ˜ฏๆœบๅ™จๅญฆไน ๏ผŸ",
    k=20  # ่ฟ”ๅ›ž Top 20
)
    โ†“
Chroma ๅ†…้ƒจ:
1. ๆŸฅ่ฏขๅ‘้‡ๅŒ–
2. HNSW ๅ›พๅฏผ่ˆช
3. ่ฎก็ฎ—ไฝ™ๅผฆ็›ธไผผๅบฆ
    โ†“
่ฟ”ๅ›ž Top 20 chunks:
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Chunk ID โ”‚  Score  โ”‚        Content             โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ chunk_5  โ”‚  0.92   โ”‚ "ๆœบๅ™จๅญฆไน ๆ˜ฏไบบๅทฅๆ™บ่ƒฝ็š„..." โ”‚
โ”‚ chunk_2  โ”‚  0.88   โ”‚ "ไบบๅทฅๆ™บ่ƒฝๅŒ…ๆ‹ฌๆœบๅ™จๅญฆไน ..." โ”‚
โ”‚ chunk_11 โ”‚  0.85   โ”‚ "็›‘็ฃๅญฆไน ๆ˜ฏๆœบๅ™จๅญฆไน ..."   โ”‚
โ”‚ ...      โ”‚  ...    โ”‚ ...                        โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜


Step 3: CrossEncoder ้‡ๆŽ’๏ผˆไฝ ็š„้กน็›ฎ็‰น่‰ฒ๏ผ‰
โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
reranker.rerank(query, top_20_chunks, top_k=5)
    โ†“
ๆฏไธช chunk ้‡ๆ–ฐๆ‰“ๅˆ†๏ผˆๆทฑๅบฆไบคไบ’๏ผ‰
    โ†“
ๆœ€็ปˆ Top 5:
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Chunk ID โ”‚  Score  โ”‚        Content             โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ chunk_5  โ”‚  8.45   โ”‚ "ๆœบๅ™จๅญฆไน ๆ˜ฏไบบๅทฅๆ™บ่ƒฝ็š„..." โ”‚
โ”‚ chunk_11 โ”‚  7.89   โ”‚ "็›‘็ฃๅญฆไน ๆ˜ฏๆœบๅ™จๅญฆไน ..."   โ”‚
โ”‚ chunk_2  โ”‚  7.23   โ”‚ "ไบบๅทฅๆ™บ่ƒฝๅŒ…ๆ‹ฌๆœบๅ™จๅญฆไน ..." โ”‚
โ”‚ chunk_14 โ”‚  6.78   โ”‚ "ๆทฑๅบฆๅญฆไน ๆ˜ฏๆœบๅ™จๅญฆไน ..."   โ”‚
โ”‚ chunk_8  โ”‚  6.12   โ”‚ "ๅผบๅŒ–ๅญฆไน ๅ…่ฎธ..."         โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜


Step 4: ่ฟ”ๅ›ž็ป™ LLM
โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
context = "\\n\\n".join([chunk.page_content for chunk in top_5])
    โ†“
LLM ็”Ÿๆˆ็ญ”ๆกˆ
""")


# ============================================================================
# Part 7: ๅ…ณ้”ฎๆŠ€ๆœฏ็ป†่Š‚
# ============================================================================
print("\n" + "=" * 80)
print("โš™๏ธ  Part 7: ๅ…ณ้”ฎๆŠ€ๆœฏ็ป†่Š‚")
print("=" * 80)

print("""
1. ไธบไป€ไนˆ่ฆๅฝ’ไธ€ๅŒ–ๅ‘้‡๏ผŸ
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
encode_kwargs={'normalize_embeddings': True}

ๅŽŸๅง‹ๅ‘้‡: [1.23, -4.56, 7.89, ...]  # ้•ฟๅบฆไธไธ€
ๅฝ’ไธ€ๅŒ–ๅŽ: [0.12, -0.45, 0.78, ...]  # ้•ฟๅบฆ = 1

ๅฅฝๅค„:
โœ… ไฝ™ๅผฆ็›ธไผผๅบฆ = ็‚น็งฏ๏ผˆ่ฎก็ฎ—ๆ›ดๅฟซ๏ผ‰
โœ… ๆ‰€ๆœ‰ๅ‘้‡ๅœจๅŒไธ€ๅฐบๅบฆไธŠ
โœ… ้ฟๅ…้•ฟๅบฆๅฝฑๅ“็›ธไผผๅบฆ่ฎก็ฎ—


2. ไฝ™ๅผฆ็›ธไผผๅบฆ vs ๆฌงๆฐ่ท็ฆป
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ไฝ™ๅผฆ็›ธไผผๅบฆ๏ผˆไฝ ็š„้กน็›ฎไฝฟ็”จ๏ผ‰โญ:
  similarity = vโ‚ ยท vโ‚‚ / (||vโ‚|| ร— ||vโ‚‚||)
  ่Œƒๅ›ด: [-1, 1]๏ผŒ1 ่กจ็คบๅฎŒๅ…จ็›ธๅŒ
  ็‰น็‚น: ๅ…ณๆณจๆ–นๅ‘๏ผŒๅฟฝ็•ฅ้•ฟๅบฆ

ๆฌงๆฐ่ท็ฆป:
  distance = โˆšฮฃ(vโ‚แตข - vโ‚‚แตข)ยฒ
  ่Œƒๅ›ด: [0, โˆž]๏ผŒ0 ่กจ็คบๅฎŒๅ…จ็›ธๅŒ
  ็‰น็‚น: ๅ…ณๆณจ็ปๅฏนไฝ็ฝฎๅทฎๅผ‚

ๅฝ’ไธ€ๅŒ–ๅŽ๏ผŒไธค่€…็ญ‰ไปท๏ผ


3. ๆ‰น้‡ๅค„็†ไผ˜ๅŒ–
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ไธๆŽจ่๏ผˆๆ…ข๏ผ‰:
for chunk in chunks:
    vector = embed_documents([chunk])  # ๅ•็‹ฌๅค„็†
    
ๆŽจ่๏ผˆๅฟซ 10 ๅ€๏ผ‰โญ:
vectors = embed_documents(chunks)  # ๆ‰น้‡ๅค„็†
  โ””โ”€ GPU ๅนถ่กŒ่ฎก็ฎ—
  โ””โ”€ ๅ‡ๅฐ‘ๆจกๅž‹ๅŠ ่ฝฝๅผ€้”€


4. ๅ†…ๅญ˜ไผ˜ๅŒ–
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ๅ‘้‡็ปดๅบฆ้€‰ๆ‹ฉ:
  384 ็ปด (all-MiniLM-L6-v2)   โ† ไฝ ็š„้กน็›ฎ โญ
  โ””โ”€ ๅนณ่กก๏ผšๅ‡†็กฎ็އ vs ๅญ˜ๅ‚จ

  768 ็ปด (BERT-base)
  โ””โ”€ ๆ›ดๅ‡†็กฎไฝ†ๅญ˜ๅ‚จ็ฟปๅ€

  1024 ็ปด (large models)
  โ””โ”€ ๆœ€ๅ‡†็กฎไฝ†ๅญ˜ๅ‚จ 3 ๅ€

ๅญ˜ๅ‚จ่ฎก็ฎ—:
20 ไธช chunks ร— 384 ็ปด ร— 4 bytes = 30KB
1000 ไธช chunks ร— 384 ็ปด ร— 4 bytes = 1.5MB
  โ””โ”€ ้žๅธธ้ซ˜ๆ•ˆ๏ผ
""")


# ============================================================================
# Part 8: ๅฎŒๆ•ดไปฃ็ ๆต็จ‹
# ============================================================================
print("\n" + "=" * 80)
print("๐Ÿ’ป Part 8: ๅฎŒๆ•ดไปฃ็ ๆต็จ‹ๆ€ป็ป“")
print("=" * 80)

print("""
ไฝ ็š„้กน็›ฎๅฎŒๆ•ดๆต็จ‹๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

# 1. ๅˆๅง‹ๅŒ– Embedding ๆจกๅž‹
embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-MiniLM-L6-v2",
    model_kwargs={'device': 'cpu'},
    encode_kwargs={'normalize_embeddings': True}
)

# 2. ๆ–‡ๆกฃๅˆ‡ๅ‰ฒ
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
    chunk_size=250,
    chunk_overlap=50  # โ† ไฝ ๅˆšไฟฎๆ”น็š„
)
doc_splits = text_splitter.split_documents(docs)

# 3. ๅ‘้‡ๅŒ– + ๅญ˜ๅ‚จๅˆฐ Chroma
vectorstore = Chroma.from_documents(
    documents=doc_splits,      # ่พ“ๅ…ฅ: 20 ไธช chunks
    collection_name="rag-chroma",
    embedding=embeddings       # ๅ‘้‡ๅŒ–ๅ‡ฝๆ•ฐ
)
# โ†“ ๅ†…้ƒจ่‡ชๅŠจๅฎŒๆˆ:
#   - ๆ‰น้‡ๅ‘้‡ๅŒ–: chunks โ†’ 384็ปดๅ‘้‡
#   - ๅญ˜ๅ‚จ: ๅ‘้‡ + ๅŽŸๆ–‡ + ๅ…ƒๆ•ฐๆฎ
#   - ๆž„ๅปบ HNSW ็ดขๅผ•

# 4. ๅˆ›ๅปบๆฃ€็ดขๅ™จ
retriever = vectorstore.as_retriever()

# 5. ๆฃ€็ดข
docs = retriever.get_relevant_documents("ไป€ไนˆๆ˜ฏๆœบๅ™จๅญฆไน ๏ผŸ")
# โ†“ ๅ†…้ƒจๆต็จ‹:
#   - ๆŸฅ่ฏขๅ‘้‡ๅŒ–
#   - HNSW ๅฟซ้€Ÿๆฃ€็ดข
#   - ่ฟ”ๅ›ž Top K chunks

# 6. CrossEncoder ้‡ๆŽ’๏ผˆๅฏ้€‰๏ผŒไฝ ็š„้กน็›ฎๆœ‰๏ผ‰
reranked = crossencoder.rerank(query, docs, top_k=5)

# 7. ๅ–‚็ป™ LLM ็”Ÿๆˆ็ญ”ๆกˆ
answer = llm.generate(context=docs, question=query)

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
""")


# ============================================================================
# Part 9: ๆ€ง่ƒฝไผ˜ๅŒ–ๅปบ่ฎฎ
# ============================================================================
print("\n" + "=" * 80)
print("๐Ÿš€ Part 9: ๆ€ง่ƒฝไผ˜ๅŒ–ๅปบ่ฎฎ")
print("=" * 80)

print("""
ๅฝ“ๅ‰้…็ฝฎ่ฏ„ๅˆ†๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

โœ… Embedding ๆจกๅž‹: all-MiniLM-L6-v2  (่ฝป้‡้ซ˜ๆ•ˆ) โญโญโญโญโญ
โœ… ๅ‘้‡ๅฝ’ไธ€ๅŒ–: True                 (ไฝ™ๅผฆ็›ธไผผๅบฆไผ˜ๅŒ–) โญโญโญโญโญ
โœ… ็ดขๅผ•็ฑปๅž‹: HNSW                   (ๅฟซ้€Ÿๆฃ€็ดข) โญโญโญโญโญ
โœ… Chunk overlap: 50                (ไฟๆŒไธŠไธ‹ๆ–‡) โญโญโญโญโญ
โœ… CrossEncoder ้‡ๆŽ’                (็ฒพๅ‡†ๆŽ’ๅบ) โญโญโญโญโญ

ๆ€ป่ฏ„: ๐Ÿ† ็”Ÿไบง็บง้…็ฝฎ๏ผ

ๅฏ้€‰ไผ˜ๅŒ–๏ผˆๅฆ‚้œ€่ฟ›ไธ€ๆญฅๆๅ‡๏ผ‰๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

1. GPU ๅŠ ้€Ÿ
   model_kwargs={'device': 'cuda'}  # ๅ‘้‡ๅŒ–้€Ÿๅบฆ 10x โ†‘

2. ๆ›ดๅคง็š„ Embedding ๆจกๅž‹๏ผˆๅฆ‚้œ€ๆ›ด้ซ˜ๅ‡†็กฎ็އ๏ผ‰
   "BAAI/bge-large-en-v1.5"  # 1024็ปด๏ผŒๅ‡†็กฎ็އ +5%

3. ๆ‰น้‡ๅคงๅฐ่ฐƒๆ•ด
   batch_size=32  # ๅŠ ๅฟซๅ‘้‡ๅŒ–

4. Chroma ๆŒไน…ๅŒ–้…็ฝฎ
   persist_directory="./chroma_db"  # ้ฟๅ…้‡ๅคๅ‘้‡ๅŒ–
""")


print("\n" + "=" * 80)
print("โœ… ่งฃๆžๅฎŒๆˆ๏ผไฝ ็Žฐๅœจ็†่งฃไบ†ไปŽๅˆ‡ๅ‰ฒๅˆฐๅ‘้‡ๆ•ฐๆฎๅบ“็š„ๅฎŒๆ•ดๆต็จ‹")
print("=" * 80)
print()