File size: 22,492 Bytes
dbd527a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
"""
ๆ–‡ๅญ—่ฝฌๅ‘้‡็š„ๅ…ทไฝ“ๅฎž็Žฐๆญฅ้ชค๏ผˆไปฃ็ ๅฑ‚้ข๏ผ‰
ๅฑ•็คบ HuggingFace Embeddings ๅ†…้ƒจ็š„ๅฎž้™…ๆ“ไฝœ
"""

print("=" * 80)
print("ๆ–‡ๅญ— โ†’ ๅ‘้‡็š„ๅ…ทไฝ“ๅฎž็Žฐๆญฅ้ชค")
print("=" * 80)

# ============================================================================
# ๅ‡†ๅค‡ๅทฅไฝœ๏ผšๆจกๆ‹ŸๅฎŒๆ•ด็š„ๅ‘้‡ๅŒ–่ฟ‡็จ‹
# ============================================================================
print("\n" + "=" * 80)
print("๐Ÿ”ง ๅ‡†ๅค‡๏ผšๅฎ‰่ฃ…ๅ’Œๅฏผๅ…ฅ้œ€่ฆ็š„ๅบ“")
print("=" * 80)

print("""
้œ€่ฆ็š„ๅบ“๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
pip install transformers torch sentence-transformers

ๅฏผๅ…ฅ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
from transformers import AutoTokenizer, AutoModel
import torch
import numpy as np
""")


# ============================================================================
# Step 1: ๅŠ ่ฝฝๆจกๅž‹ๅ’Œๅˆ†่ฏๅ™จ
# ============================================================================
print("\n" + "=" * 80)
print("Step 1: ๅŠ ่ฝฝ้ข„่ฎญ็ปƒๆจกๅž‹ๅ’Œๅˆ†่ฏๅ™จ")
print("=" * 80)

print("""
ไปฃ็ ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
from transformers import AutoTokenizer, AutoModel

model_name = "sentence-transformers/all-MiniLM-L6-v2"

# 1. ๅŠ ่ฝฝๅˆ†่ฏๅ™จ๏ผˆ่ดŸ่ดฃๆ–‡ๅญ— โ†’ ID๏ผ‰
tokenizer = AutoTokenizer.from_pretrained(model_name)

# 2. ๅŠ ่ฝฝๆจกๅž‹๏ผˆ่ดŸ่ดฃ ID โ†’ ๅ‘้‡๏ผ‰
model = AutoModel.from_pretrained(model_name)
model.eval()  # ่ฎพ็ฝฎไธบ่ฏ„ไผฐๆจกๅผ๏ผˆไธ่ฎญ็ปƒ๏ผ‰

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

่ฟ™ไธคไธชไธœ่ฅฟๅšไป€ไนˆ๏ผŸ
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

Tokenizer๏ผˆๅˆ†่ฏๅ™จ๏ผ‰๏ผš
โ”œโ”€ ่ฏๆฑ‡่กจ๏ผˆvocabulary๏ผ‰๏ผš30,000+ ไธช่ฏ
โ”‚  ไพ‹ๅฆ‚๏ผš{"hello": 1, "world": 2, "machine": 3456, ...}
โ””โ”€ ๅˆ†่ฏ่ง„ๅˆ™๏ผšๅฆ‚ไฝ•ๅˆ‡ๅˆ†ๆ–‡ๅญ—

Model๏ผˆๆจกๅž‹๏ผ‰๏ผš
โ”œโ”€ Embedding ๅฑ‚๏ผš่ฏๆฑ‡่กจ โ†’ ๅˆๅง‹ๅ‘้‡
โ”‚  30,000 ร— 384 ็š„็Ÿฉ้˜ต๏ผˆๆฏไธช่ฏๅฏนๅบ”ไธ€ไธช 384 ็ปดๅ‘้‡๏ผ‰
โ”œโ”€ Transformer ๅฑ‚๏ผš6 ๅฑ‚ BERT encoder
โ”‚  ๆฏๅฑ‚้ƒฝๆœ‰ Self-Attention + Feed Forward
โ””โ”€ ๅ‚ๆ•ฐ้‡๏ผš22M๏ผˆ2200ไธ‡ไธชๆ•ฐๅญ—๏ผ‰
""")


# ============================================================================
# Step 2: ๅˆ†่ฏ๏ผˆTokenization๏ผ‰
# ============================================================================
print("\n" + "=" * 80)
print("Step 2: ๅˆ†่ฏ - ๆ–‡ๅญ—่ฝฌไธบ Token IDs")
print("=" * 80)

print("""
่พ“ๅ…ฅๆ–‡ๆœฌ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
text = "Machine learning is a subset of artificial intelligence"

ไปฃ็ ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
# ๅˆ†่ฏๅนถ่ฝฌๆขไธบๆจกๅž‹่พ“ๅ…ฅๆ ผๅผ
encoded_input = tokenizer(
    text,
    padding=True,      # ๅกซๅ……ๅˆฐ็›ธๅŒ้•ฟๅบฆ
    truncation=True,   # ่ถ…้•ฟๆˆชๆ–ญ
    max_length=512,    # ๆœ€ๅคง้•ฟๅบฆ
    return_tensors='pt' # ่ฟ”ๅ›ž PyTorch tensor
)

print(encoded_input)

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

่พ“ๅ‡บ๏ผˆencoded_input ๅŒ…ๅซ๏ผ‰๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
{
  'input_ids': tensor([[
      101,     # [CLS] ็‰นๆฎŠๆ ‡่ฎฐ
      3698,    # "machine"
      4083,    # "learning"
      2003,    # "is"
      1037,    # "a"
      2042,    # "subset"
      1997,    # "of"
      7976,    # "artificial"
      4454,    # "intelligence"
      102      # [SEP] ็‰นๆฎŠๆ ‡่ฎฐ
  ]]),
  
  'attention_mask': tensor([[
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1  # ๆ‰€ๆœ‰ไฝ็ฝฎ้ƒฝๆœ‰ๆ•ˆ๏ผˆ1่กจ็คบๅ…ณๆณจ๏ผŒ0่กจ็คบๅฟฝ็•ฅ๏ผ‰
  ]])
}

่ฏฆ็ป†่งฃ้‡Š๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

input_ids:
  ๆฏไธชๆ•ฐๅญ—ๅฏนๅบ”ไธ€ไธช่ฏ
  101 = [CLS]๏ผˆๅฅๅญๅผ€ๅง‹ๆ ‡่ฎฐ๏ผ‰
  3698 = "machine"
  102 = [SEP]๏ผˆๅฅๅญ็ป“ๆŸๆ ‡่ฎฐ๏ผ‰

attention_mask:
  ๅ‘Š่ฏ‰ๆจกๅž‹ๅ“ชไบ›ไฝ็ฝฎๆ˜ฏ็œŸๅฎžๅ†…ๅฎน๏ผˆ1๏ผ‰๏ผŒๅ“ชไบ›ๆ˜ฏๅกซๅ……๏ผˆ0๏ผ‰
  ไพ‹ๅฆ‚๏ผš[1, 1, 1, 0, 0] ่กจ็คบๅ‰3ไธชๆ˜ฏ็œŸๅฎž่ฏ๏ผŒๅŽ2ไธชๆ˜ฏๅกซๅ……
""")


# ============================================================================
# Step 3: ้€š่ฟ‡ Embedding ๅฑ‚่Žทๅ–ๅˆๅง‹ๅ‘้‡
# ============================================================================
print("\n" + "=" * 80)
print("Step 3: Token IDs โ†’ ๅˆๅง‹ๅ‘้‡๏ผˆEmbedding ๅฑ‚๏ผ‰")
print("=" * 80)

print("""
่ฟ™ไธ€ๆญฅๅ‘็”Ÿๅœจๆจกๅž‹ๅ†…้ƒจ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

input_ids = [101, 3698, 4083, 2003, ...]
                โ†“
        Embedding ่กจๆŸฅ่ฏข
                โ†“

Embedding ่กจ๏ผˆ็ฎ€ๅŒ–๏ผ‰๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
่ฟ™ๆ˜ฏไธ€ไธชๅทจๅคง็š„็Ÿฉ้˜ต๏ผš30,522 ร— 384
๏ผˆ30,522 ๆ˜ฏ่ฏๆฑ‡่กจๅคงๅฐ๏ผŒ384 ๆ˜ฏๅ‘้‡็ปดๅบฆ๏ผ‰

  ID    |  ็ฌฌ1็ปด  ็ฌฌ2็ปด  ็ฌฌ3็ปด  ...  ็ฌฌ384็ปด
  โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
  101   |  0.12  -0.34   0.56  ...   0.78   โ† [CLS]
  3698  |  0.23   0.45  -0.67  ...   0.89   โ† "machine"
  4083  |  0.34  -0.56   0.78  ...  -0.90   โ† "learning"
  2003  |  0.45   0.67  -0.89  ...   0.12   โ† "is"
  ...

ๆŸฅ่ฏข่ฟ‡็จ‹๏ผˆ็ฑปไผผๅญ—ๅ…ธๆŸฅ่ฏข๏ผ‰๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
ID 101  โ†’ ๆŸฅ่กจ โ†’ [0.12, -0.34, 0.56, ..., 0.78]
ID 3698 โ†’ ๆŸฅ่กจ โ†’ [0.23, 0.45, -0.67, ..., 0.89]
ID 4083 โ†’ ๆŸฅ่กจ โ†’ [0.34, -0.56, 0.78, ..., -0.90]
...

็ป“ๆžœ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
token_embeddings = [
    [0.12, -0.34, 0.56, ..., 0.78],  # [CLS]
    [0.23,  0.45, -0.67, ..., 0.89],  # "machine"
    [0.34, -0.56, 0.78, ..., -0.90],  # "learning"
    [0.45,  0.67, -0.89, ..., 0.12],  # "is"
    ...
]
ๅฝข็Šถ๏ผš(10, 384)  # 10 ไธช tokens๏ผŒๆฏไธช 384 ็ปด

โš ๏ธ ๆณจๆ„๏ผš่ฟ™ไบ›่ฟ˜ไธๆ˜ฏๆœ€็ปˆๅ‘้‡๏ผ้œ€่ฆ้€š่ฟ‡ Transformer ๅค„็†๏ผ
""")


# ============================================================================
# Step 4: Transformer ๅค„็†๏ผˆๆ ธๅฟƒ๏ผ๏ผ‰
# ============================================================================
print("\n" + "=" * 80)
print("Step 4: Transformer ๅค„็† - Self-Attention๏ผˆๆ ธๅฟƒๆญฅ้ชค๏ผ‰")
print("=" * 80)

print("""
ไปฃ็ ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
with torch.no_grad():  # ไธ่ฎก็ฎ—ๆขฏๅบฆ๏ผˆไธ่ฎญ็ปƒ๏ผ‰
    outputs = model(**encoded_input)

# outputs.last_hidden_state ๅฐฑๆ˜ฏ Transformer ็š„่พ“ๅ‡บ
token_embeddings = outputs.last_hidden_state
print(token_embeddings.shape)  # torch.Size([1, 10, 384])
                               #   ๆ‰นๆฌก  tokens  ็ปดๅบฆ

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

Transformer ๅ†…้ƒจๅšไบ†ไป€ไนˆ๏ผŸ๏ผˆ6 ๅฑ‚ๅค„็†๏ผ‰
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

่พ“ๅ…ฅ๏ผšๅˆๅง‹ embeddings
  [CLS]:     [0.12, -0.34, 0.56, ...]
  machine:   [0.23,  0.45, -0.67, ...]
  learning:  [0.34, -0.56, 0.78, ...]
  is:        [0.45,  0.67, -0.89, ...]
  ...

        โ†“
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Layer 1: Self-Attention                                  โ”‚
โ”‚ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ”‚
โ”‚                                                          โ”‚
โ”‚ ๆฏไธช่ฏ"็œ‹"ๅ…ถไป–ๆ‰€ๆœ‰่ฏ๏ผŒๆ›ดๆ–ฐ่‡ชๅทฑ็š„ๅ‘้‡๏ผš                    โ”‚
โ”‚                                                          โ”‚
โ”‚ "machine" ็œ‹ๅˆฐ "learning" โ†’ ็†่งฃ่ฟ™ๆ˜ฏไธ€ไธช่ฏ็ป„              โ”‚
โ”‚ "learning" ็œ‹ๅˆฐ "artificial" โ†’ ็†่งฃไธŽAI็›ธๅ…ณ              โ”‚
โ”‚ "is" ็œ‹ๅˆฐๅ‰ๅŽ่ฏ โ†’ ็†่งฃๆ˜ฏ่ฟžๆŽฅ่ฏ                           โ”‚
โ”‚                                                          โ”‚
โ”‚ ๆ›ดๆ–ฐๅŽ็š„ๅ‘้‡ๅŒ…ๅซไบ†ไธŠไธ‹ๆ–‡ไฟกๆฏ                              โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
        โ†“
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Layer 2: Self-Attention                                  โ”‚
โ”‚ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ”‚
โ”‚ ็ปง็ปญๆทฑๅŒ–็†่งฃ...                                          โ”‚
โ”‚ "machine learning" ไฝœไธบๆ•ดไฝ“็†่งฃ                          โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
        โ†“
        ... (Layer 3, 4, 5) ...
        โ†“
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Layer 6: Self-Attention (ๆœ€ๅŽไธ€ๅฑ‚)                       โ”‚
โ”‚ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ”‚
โ”‚ ๆฏไธช่ฏ็š„ๅ‘้‡็ŽฐๅœจๅŒ…ๅซไบ†๏ผš                                  โ”‚
โ”‚ - ่‡ชๅทฑ็š„่ฏญไน‰                                             โ”‚
โ”‚ - ไธŠไธ‹ๆ–‡ไฟกๆฏ                                             โ”‚
โ”‚ - ๆ•ดไธชๅฅๅญ็š„ๅซไน‰                                         โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
        โ†“
ๆœ€็ปˆ่พ“ๅ‡บ๏ผš
  [CLS]:     [0.234,  0.567, -0.890, ...]  # ๆ›ดๆ–ฐๅŽ๏ผŒๅŒ…ๅซๅ…จๅฅไฟกๆฏ
  machine:   [0.345, -0.678,  0.123, ...]  # ๅŒ…ๅซ "learning" ็š„ไฟกๆฏ
  learning:  [0.456,  0.789, -0.234, ...]  # ๅŒ…ๅซ "machine" ็š„ไฟกๆฏ
  ...

ๅฝข็Šถ๏ผš(1, 10, 384)
      ๆ‰นๆฌก tokens ็ปดๅบฆ
""")


# ============================================================================
# Step 5: Mean Pooling - ๅˆๅนถๆˆไธ€ไธชๅฅๅญๅ‘้‡
# ============================================================================
print("\n" + "=" * 80)
print("Step 5: Mean Pooling - ๆŠŠๅคšไธช่ฏๅ‘้‡ๅˆๅนถๆˆไธ€ไธชๅฅๅญๅ‘้‡")
print("=" * 80)

print("""
้—ฎ้ข˜๏ผš็Žฐๅœจๆœ‰ 10 ไธช่ฏ๏ผŒๆฏไธช่ฏไธ€ไธชๅ‘้‡
     ๅฆ‚ไฝ•ๅ˜ๆˆ 1 ไธชๅฅๅญๅ‘้‡๏ผŸ
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ไปฃ็ ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
def mean_pooling(token_embeddings, attention_mask):
    \"\"\"
    ๅฏนๆ‰€ๆœ‰่ฏๅ‘้‡ๆฑ‚ๅนณๅ‡๏ผˆ่€ƒ่™‘ attention_mask๏ผ‰
    \"\"\"
    # token_embeddings: (1, 10, 384)
    # attention_mask:   (1, 10)
    
    # ๆ‰ฉๅฑ• mask ็š„็ปดๅบฆไปฅๅŒน้… embeddings
    # (1, 10) โ†’ (1, 10, 1) โ†’ (1, 10, 384)
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(
        token_embeddings.size()
    ).float()
    
    # ๅฐ† embeddings ไธŽ mask ็›ธไน˜๏ผˆๅฟฝ็•ฅๅกซๅ……้ƒจๅˆ†๏ผ‰
    # ็„ถๅŽๅฏนๆ‰€ๆœ‰่ฏๆฑ‚ๅ’Œ
    sum_embeddings = torch.sum(
        token_embeddings * input_mask_expanded, 
        dim=1  # ๅœจ token ็ปดๅบฆๆฑ‚ๅ’Œ
    )
    
    # ่ฎก็ฎ—ๆœ‰ๆ•ˆ token ็š„ๆ•ฐ้‡
    sum_mask = torch.clamp(
        input_mask_expanded.sum(dim=1), 
        min=1e-9  # ้ฟๅ…้™ค้›ถ
    )
    
    # ๆฑ‚ๅนณๅ‡
    mean_embeddings = sum_embeddings / sum_mask
    
    return mean_embeddings

# ไฝฟ็”จ
sentence_embedding = mean_pooling(
    token_embeddings, 
    encoded_input['attention_mask']
)

print(sentence_embedding.shape)  # torch.Size([1, 384])
                                 #   ๆ‰นๆฌก  ็ปดๅบฆ

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ๅ…ทไฝ“่ฎก็ฎ—๏ผˆ็ฎ€ๅŒ–็คบไพ‹๏ผ‰๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

10 ไธช่ฏๅ‘้‡๏ผŒๆฏไธช 384 ็ปด๏ผš
  Token 1: [0.234,  0.567, -0.890, ..., 0.123]
  Token 2: [0.345, -0.678,  0.123, ..., 0.234]
  Token 3: [0.456,  0.789, -0.234, ..., 0.345]
  ...
  Token 10: [0.567, 0.890,  0.345, ..., 0.456]

ๆฑ‚ๅนณๅ‡๏ผˆๅฏนๆฏไธ€็ปดๅˆ†ๅˆซๅนณๅ‡๏ผ‰๏ผš
  ็ฌฌ1็ปด: (0.234 + 0.345 + 0.456 + ... + 0.567) / 10 = 0.412
  ็ฌฌ2็ปด: (0.567 - 0.678 + 0.789 + ... + 0.890) / 10 = 0.523
  ็ฌฌ3็ปด: (-0.890 + 0.123 - 0.234 + ... + 0.345) / 10 = -0.089
  ...
  ็ฌฌ384็ปด: (0.123 + 0.234 + 0.345 + ... + 0.456) / 10 = 0.289

ๅฅๅญๅ‘้‡ = [0.412, 0.523, -0.089, ..., 0.289]  (384็ปด)
""")


# ============================================================================
# Step 6: ๅฝ’ไธ€ๅŒ–๏ผˆNormalization๏ผ‰
# ============================================================================
print("\n" + "=" * 80)
print("Step 6: L2 ๅฝ’ไธ€ๅŒ– - ๅฐ†ๅ‘้‡้•ฟๅบฆ็ผฉๆ”พๅˆฐ 1")
print("=" * 80)

print("""
ไปฃ็ ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
import torch.nn.functional as F

# L2 ๅฝ’ไธ€ๅŒ–
sentence_embedding = F.normalize(
    sentence_embedding, 
    p=2,    # L2 ่Œƒๆ•ฐ
    dim=1   # ๅœจ็‰นๅพ็ปดๅบฆๅฝ’ไธ€ๅŒ–
)

print(sentence_embedding.shape)  # torch.Size([1, 384])

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ๅฝ’ไธ€ๅŒ–็š„ไฝœ็”จ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ๅฝ’ไธ€ๅŒ–ๅ‰็š„ๅ‘้‡๏ผš
  v = [0.412, 0.523, -0.089, ..., 0.289]
  ้•ฟๅบฆ ||v|| = โˆš(0.412ยฒ + 0.523ยฒ + ... + 0.289ยฒ) = 2.37

ๅฝ’ไธ€ๅŒ–ๅŽ็š„ๅ‘้‡๏ผš
  v_norm = v / ||v||
  v_norm = [0.412/2.37, 0.523/2.37, ..., 0.289/2.37]
         = [0.174, 0.221, -0.038, ..., 0.122]
  ้•ฟๅบฆ ||v_norm|| = 1  โœ“

ๅฅฝๅค„๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
โœ… ๆ‰€ๆœ‰ๅ‘้‡้•ฟๅบฆ็›ธๅŒ๏ผˆ้ƒฝๆ˜ฏ1๏ผ‰๏ผŒๆ–นไพฟๆฏ”่พƒ
โœ… ไฝ™ๅผฆ็›ธไผผๅบฆ = ็‚น็งฏ๏ผˆ่ฎก็ฎ—ๆ›ดๅฟซ๏ผ‰
   cos_sim(a, b) = aยทb / (||a|| ร— ||b||)
   ๅฆ‚ๆžœๅฝ’ไธ€ๅŒ–: cos_sim(a, b) = aยทb  โ† ็ฎ€ๅŒ–ไบ†๏ผ

โœ… ๆถˆ้™คๅ‘้‡้•ฟๅบฆ็š„ๅฝฑๅ“๏ผŒๅชๅ…ณๆณจๆ–นๅ‘
""")


# ============================================================================
# Step 7: ๆœ€็ปˆ่พ“ๅ‡บ
# ============================================================================
print("\n" + "=" * 80)
print("Step 7: ๅพ—ๅˆฐๆœ€็ปˆ็š„ๅฅๅญๅ‘้‡")
print("=" * 80)

print("""
ๆœ€็ปˆ็ป“ๆžœ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

# ่ฝฌๆขไธบ numpy ๆ•ฐ็ป„๏ผˆๆ–นไพฟไฝฟ็”จ๏ผ‰
final_vector = sentence_embedding.cpu().numpy()[0]

print(final_vector.shape)  # (384,)
print(final_vector[:5])    # ๅ‰5ไธชๆ•ฐๅญ—
# [0.174, 0.221, -0.038, 0.095, 0.312]

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

่ฟ™ๅฐฑๆ˜ฏๆœ€็ปˆ็š„ๅฅๅญๅ‘้‡๏ผ
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

่พ“ๅ…ฅ: "Machine learning is a subset of artificial intelligence"
่พ“ๅ‡บ: [0.174, 0.221, -0.038, ..., 0.122]  (384 ไธชๆ•ฐๅญ—)

่ฟ™ไธชๅ‘้‡ๅŒ…ๅซไบ†๏ผš
โœ… ๆฏไธช่ฏ็š„่ฏญไน‰
โœ… ่ฏไธŽ่ฏไน‹้—ด็š„ๅ…ณ็ณป
โœ… ๆ•ดไธชๅฅๅญ็š„ๅซไน‰

ๅฏไปฅ็”จๆฅ๏ผš
โœ… ่ฎก็ฎ—ไธŽๅ…ถไป–ๅฅๅญ็š„็›ธไผผๅบฆ
โœ… ๅญ˜ๅ…ฅๅ‘้‡ๆ•ฐๆฎๅบ“
โœ… ่ฟ›่กŒ่ฏญไน‰ๆœ็ดข
""")


# ============================================================================
# ๅฎŒๆ•ดไปฃ็ ๆฑ‡ๆ€ป
# ============================================================================
print("\n" + "=" * 80)
print("๐Ÿ“ ๅฎŒๆ•ดไปฃ็ ๆฑ‡ๆ€ป๏ผˆๅฎž้™…ๅฏ่ฟ่กŒ๏ผ‰")
print("=" * 80)

print("""
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F

def text_to_vector(text):
    \"\"\"
    ๅฎŒๆ•ด็š„ๆ–‡ๅญ—่ฝฌๅ‘้‡ๆต็จ‹
    \"\"\"
    # Step 1: ๅŠ ่ฝฝๆจกๅž‹
    model_name = "sentence-transformers/all-MiniLM-L6-v2"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name)
    model.eval()
    
    # Step 2: ๅˆ†่ฏ
    encoded_input = tokenizer(
        text,
        padding=True,
        truncation=True,
        max_length=512,
        return_tensors='pt'
    )
    
    # Step 3 & 4: ้€š่ฟ‡ๆจกๅž‹๏ผˆEmbedding + Transformer๏ผ‰
    with torch.no_grad():
        outputs = model(**encoded_input)
        token_embeddings = outputs.last_hidden_state
    
    # Step 5: Mean Pooling
    attention_mask = encoded_input['attention_mask']
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(
        token_embeddings.size()
    ).float()
    
    sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, dim=1)
    sum_mask = torch.clamp(input_mask_expanded.sum(dim=1), min=1e-9)
    sentence_embedding = sum_embeddings / sum_mask
    
    # Step 6: ๅฝ’ไธ€ๅŒ–
    sentence_embedding = F.normalize(sentence_embedding, p=2, dim=1)
    
    # Step 7: ่ฝฌไธบ numpy
    return sentence_embedding.cpu().numpy()[0]


# ไฝฟ็”จ็คบไพ‹๏ผš
text = "Machine learning is a subset of artificial intelligence"
vector = text_to_vector(text)

print(f"่พ“ๅ…ฅ: {text}")
print(f"ๅ‘้‡็ปดๅบฆ: {vector.shape}")  # (384,)
print(f"ๅ‰10ไธชๆ•ฐๅญ—: {vector[:10]}")
print(f"ๅ‘้‡้•ฟๅบฆ: {np.linalg.norm(vector)}")  # ๅบ”่ฏฅๆ˜ฏ 1.0

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ไฝ ็š„้กน็›ฎไธญ็š„็ฎ€ๅŒ–่ฐƒ็”จ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

from langchain_community.embeddings import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-MiniLM-L6-v2"
)

vector = embeddings.embed_query(text)
# โ†‘ ่ฟ™ไธ€่กŒๅ†…้ƒจๆ‰ง่กŒไบ†ไธŠ้ขๆ‰€ๆœ‰ 7 ไธชๆญฅ้ชค๏ผ

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”
""")


# ============================================================================
# ๅ…ณ้”ฎๆญฅ้ชคๆ—ถ้—ดๅˆ†ๆž
# ============================================================================
print("\n" + "=" * 80)
print("โฑ๏ธ  ๅ„ๆญฅ้ชค่€—ๆ—ถๅˆ†ๆž")
print("=" * 80)

print("""
ๅ‡่ฎพๅค„็†ไธ€ไธชๅฅๅญ๏ผˆ10ไธช่ฏ๏ผ‰๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

Step 1: ๅŠ ่ฝฝๆจกๅž‹           0.5-2็ง’   (ๅช้œ€ไธ€ๆฌก๏ผŒๅฏๅค็”จ)
Step 2: ๅˆ†่ฏ               <1ๆฏซ็ง’    (้žๅธธๅฟซ)
Step 3: Embedding ๆŸฅ่กจ     <1ๆฏซ็ง’    (็Ÿฉ้˜ต็ดขๅผ•)
Step 4: Transformer ๅค„็†   10-50ๆฏซ็ง’ (6ๅฑ‚่ฎก็ฎ—๏ผŒๆœ€ๆ…ข)
Step 5: Mean Pooling       <1ๆฏซ็ง’    (็ฎ€ๅ•ๅนณๅ‡)
Step 6: ๅฝ’ไธ€ๅŒ–             <1ๆฏซ็ง’    (็ฎ€ๅ•้™คๆณ•)
Step 7: ่ฝฌๆขๆ ผๅผ           <1ๆฏซ็ง’

ๆ€ป่€—ๆ—ถ: 10-50ๆฏซ็ง’ (GPU) ๆˆ– 50-200ๆฏซ็ง’ (CPU)

ๆ‰น้‡ๅค„็†๏ผˆ20ไธชๅฅๅญ๏ผ‰:
  ๅ•ไธชๅค„็†: 20 ร— 50ms = 1000ms
  ๆ‰น้‡ๅค„็†: 100ms โ† ๅฟซ10ๅ€๏ผ(GPUๅนถ่กŒ)
  
่ฟ™ๅฐฑๆ˜ฏไธบไป€ไนˆ่ฆๆ‰น้‡ๅ‘้‡ๅŒ–๏ผ
""")


print("\n" + "=" * 80)
print("โœ… ๆ–‡ๅญ—่ฝฌๅ‘้‡็š„ๅฎž็Žฐๆญฅ้ชค่ฎฒ่งฃๅฎŒๆฏ•๏ผ")
print("=" * 80)
print("""
ๆ ธๅฟƒๆญฅ้ชคๅ›ž้กพ๏ผš
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

ๆ–‡ๅญ—
  โ†“ Step 1: ๅŠ ่ฝฝๆจกๅž‹
Tokenizer + Model
  โ†“ Step 2: ๅˆ†่ฏ
Token IDs: [101, 3698, 4083, ...]
  โ†“ Step 3: Embedding ๆŸฅ่กจ
ๅˆๅง‹ๅ‘้‡: [(10, 384)]
  โ†“ Step 4: Transformer ๅค„็†
ๆ›ดๆ–ฐๅ‘้‡: [(10, 384)]  ๅŒ…ๅซไธŠไธ‹ๆ–‡ไฟกๆฏ
  โ†“ Step 5: Mean Pooling
ๅฅๅญๅ‘้‡: [(1, 384)]
  โ†“ Step 6: ๅฝ’ไธ€ๅŒ–
ๅฝ’ไธ€ๅŒ–ๅ‘้‡: [(1, 384)]  ้•ฟๅบฆ=1
  โ†“ Step 7: ่พ“ๅ‡บ
ๆœ€็ปˆๅ‘้‡: [0.174, 0.221, ..., 0.122]

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

็Žฐๅœจไฝ ็Ÿฅ้“ไบ†ๆฏไธ€ๆญฅ็š„ๅ…ทไฝ“ๆ“ไฝœ๏ผ
""")
print()