Spaces:
Paused
Paused
File size: 22,492 Bytes
dbd527a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
"""
ๆๅญ่ฝฌๅ้็ๅ
ทไฝๅฎ็ฐๆญฅ้ชค๏ผไปฃ็ ๅฑ้ข๏ผ
ๅฑ็คบ HuggingFace Embeddings ๅ
้จ็ๅฎ้
ๆไฝ
"""
print("=" * 80)
print("ๆๅญ โ ๅ้็ๅ
ทไฝๅฎ็ฐๆญฅ้ชค")
print("=" * 80)
# ============================================================================
# ๅๅคๅทฅไฝ๏ผๆจกๆๅฎๆด็ๅ้ๅ่ฟ็จ
# ============================================================================
print("\n" + "=" * 80)
print("๐ง ๅๅค๏ผๅฎ่ฃ
ๅๅฏผๅ
ฅ้่ฆ็ๅบ")
print("=" * 80)
print("""
้่ฆ็ๅบ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
pip install transformers torch sentence-transformers
ๅฏผๅ
ฅ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
from transformers import AutoTokenizer, AutoModel
import torch
import numpy as np
""")
# ============================================================================
# Step 1: ๅ ่ฝฝๆจกๅๅๅ่ฏๅจ
# ============================================================================
print("\n" + "=" * 80)
print("Step 1: ๅ ่ฝฝ้ข่ฎญ็ปๆจกๅๅๅ่ฏๅจ")
print("=" * 80)
print("""
ไปฃ็ ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
from transformers import AutoTokenizer, AutoModel
model_name = "sentence-transformers/all-MiniLM-L6-v2"
# 1. ๅ ่ฝฝๅ่ฏๅจ๏ผ่ด่ดฃๆๅญ โ ID๏ผ
tokenizer = AutoTokenizer.from_pretrained(model_name)
# 2. ๅ ่ฝฝๆจกๅ๏ผ่ด่ดฃ ID โ ๅ้๏ผ
model = AutoModel.from_pretrained(model_name)
model.eval() # ่ฎพ็ฝฎไธบ่ฏไผฐๆจกๅผ๏ผไธ่ฎญ็ป๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
่ฟไธคไธชไธ่ฅฟๅไปไน๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Tokenizer๏ผๅ่ฏๅจ๏ผ๏ผ
โโ ่ฏๆฑ่กจ๏ผvocabulary๏ผ๏ผ30,000+ ไธช่ฏ
โ ไพๅฆ๏ผ{"hello": 1, "world": 2, "machine": 3456, ...}
โโ ๅ่ฏ่งๅ๏ผๅฆไฝๅๅๆๅญ
Model๏ผๆจกๅ๏ผ๏ผ
โโ Embedding ๅฑ๏ผ่ฏๆฑ่กจ โ ๅๅงๅ้
โ 30,000 ร 384 ็็ฉ้ต๏ผๆฏไธช่ฏๅฏนๅบไธไธช 384 ็ปดๅ้๏ผ
โโ Transformer ๅฑ๏ผ6 ๅฑ BERT encoder
โ ๆฏๅฑ้ฝๆ Self-Attention + Feed Forward
โโ ๅๆฐ้๏ผ22M๏ผ2200ไธไธชๆฐๅญ๏ผ
""")
# ============================================================================
# Step 2: ๅ่ฏ๏ผTokenization๏ผ
# ============================================================================
print("\n" + "=" * 80)
print("Step 2: ๅ่ฏ - ๆๅญ่ฝฌไธบ Token IDs")
print("=" * 80)
print("""
่พๅ
ฅๆๆฌ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
text = "Machine learning is a subset of artificial intelligence"
ไปฃ็ ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# ๅ่ฏๅนถ่ฝฌๆขไธบๆจกๅ่พๅ
ฅๆ ผๅผ
encoded_input = tokenizer(
text,
padding=True, # ๅกซๅ
ๅฐ็ธๅ้ฟๅบฆ
truncation=True, # ่ถ
้ฟๆชๆญ
max_length=512, # ๆๅคง้ฟๅบฆ
return_tensors='pt' # ่ฟๅ PyTorch tensor
)
print(encoded_input)
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
่พๅบ๏ผencoded_input ๅ
ๅซ๏ผ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
{
'input_ids': tensor([[
101, # [CLS] ็นๆฎๆ ่ฎฐ
3698, # "machine"
4083, # "learning"
2003, # "is"
1037, # "a"
2042, # "subset"
1997, # "of"
7976, # "artificial"
4454, # "intelligence"
102 # [SEP] ็นๆฎๆ ่ฎฐ
]]),
'attention_mask': tensor([[
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 # ๆๆไฝ็ฝฎ้ฝๆๆ๏ผ1่กจ็คบๅ
ณๆณจ๏ผ0่กจ็คบๅฟฝ็ฅ๏ผ
]])
}
่ฏฆ็ป่งฃ้๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
input_ids:
ๆฏไธชๆฐๅญๅฏนๅบไธไธช่ฏ
101 = [CLS]๏ผๅฅๅญๅผๅงๆ ่ฎฐ๏ผ
3698 = "machine"
102 = [SEP]๏ผๅฅๅญ็ปๆๆ ่ฎฐ๏ผ
attention_mask:
ๅ่ฏๆจกๅๅชไบไฝ็ฝฎๆฏ็ๅฎๅ
ๅฎน๏ผ1๏ผ๏ผๅชไบๆฏๅกซๅ
๏ผ0๏ผ
ไพๅฆ๏ผ[1, 1, 1, 0, 0] ่กจ็คบๅ3ไธชๆฏ็ๅฎ่ฏ๏ผๅ2ไธชๆฏๅกซๅ
""")
# ============================================================================
# Step 3: ้่ฟ Embedding ๅฑ่ทๅๅๅงๅ้
# ============================================================================
print("\n" + "=" * 80)
print("Step 3: Token IDs โ ๅๅงๅ้๏ผEmbedding ๅฑ๏ผ")
print("=" * 80)
print("""
่ฟไธๆญฅๅ็ๅจๆจกๅๅ
้จ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
input_ids = [101, 3698, 4083, 2003, ...]
โ
Embedding ่กจๆฅ่ฏข
โ
Embedding ่กจ๏ผ็ฎๅ๏ผ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
่ฟๆฏไธไธชๅทจๅคง็็ฉ้ต๏ผ30,522 ร 384
๏ผ30,522 ๆฏ่ฏๆฑ่กจๅคงๅฐ๏ผ384 ๆฏๅ้็ปดๅบฆ๏ผ
ID | ็ฌฌ1็ปด ็ฌฌ2็ปด ็ฌฌ3็ปด ... ็ฌฌ384็ปด
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
101 | 0.12 -0.34 0.56 ... 0.78 โ [CLS]
3698 | 0.23 0.45 -0.67 ... 0.89 โ "machine"
4083 | 0.34 -0.56 0.78 ... -0.90 โ "learning"
2003 | 0.45 0.67 -0.89 ... 0.12 โ "is"
...
ๆฅ่ฏข่ฟ็จ๏ผ็ฑปไผผๅญๅ
ธๆฅ่ฏข๏ผ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ID 101 โ ๆฅ่กจ โ [0.12, -0.34, 0.56, ..., 0.78]
ID 3698 โ ๆฅ่กจ โ [0.23, 0.45, -0.67, ..., 0.89]
ID 4083 โ ๆฅ่กจ โ [0.34, -0.56, 0.78, ..., -0.90]
...
็ปๆ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
token_embeddings = [
[0.12, -0.34, 0.56, ..., 0.78], # [CLS]
[0.23, 0.45, -0.67, ..., 0.89], # "machine"
[0.34, -0.56, 0.78, ..., -0.90], # "learning"
[0.45, 0.67, -0.89, ..., 0.12], # "is"
...
]
ๅฝข็ถ๏ผ(10, 384) # 10 ไธช tokens๏ผๆฏไธช 384 ็ปด
โ ๏ธ ๆณจๆ๏ผ่ฟไบ่ฟไธๆฏๆ็ปๅ้๏ผ้่ฆ้่ฟ Transformer ๅค็๏ผ
""")
# ============================================================================
# Step 4: Transformer ๅค็๏ผๆ ธๅฟ๏ผ๏ผ
# ============================================================================
print("\n" + "=" * 80)
print("Step 4: Transformer ๅค็ - Self-Attention๏ผๆ ธๅฟๆญฅ้ชค๏ผ")
print("=" * 80)
print("""
ไปฃ็ ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
with torch.no_grad(): # ไธ่ฎก็ฎๆขฏๅบฆ๏ผไธ่ฎญ็ป๏ผ
outputs = model(**encoded_input)
# outputs.last_hidden_state ๅฐฑๆฏ Transformer ็่พๅบ
token_embeddings = outputs.last_hidden_state
print(token_embeddings.shape) # torch.Size([1, 10, 384])
# ๆนๆฌก tokens ็ปดๅบฆ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Transformer ๅ
้จๅไบไปไน๏ผ๏ผ6 ๅฑๅค็๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
่พๅ
ฅ๏ผๅๅง embeddings
[CLS]: [0.12, -0.34, 0.56, ...]
machine: [0.23, 0.45, -0.67, ...]
learning: [0.34, -0.56, 0.78, ...]
is: [0.45, 0.67, -0.89, ...]
...
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Layer 1: Self-Attention โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ
โ ๆฏไธช่ฏ"็"ๅ
ถไปๆๆ่ฏ๏ผๆดๆฐ่ชๅทฑ็ๅ้๏ผ โ
โ โ
โ "machine" ็ๅฐ "learning" โ ็่งฃ่ฟๆฏไธไธช่ฏ็ป โ
โ "learning" ็ๅฐ "artificial" โ ็่งฃไธAI็ธๅ
ณ โ
โ "is" ็ๅฐๅๅ่ฏ โ ็่งฃๆฏ่ฟๆฅ่ฏ โ
โ โ
โ ๆดๆฐๅ็ๅ้ๅ
ๅซไบไธไธๆไฟกๆฏ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Layer 2: Self-Attention โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ ็ปง็ปญๆทฑๅ็่งฃ... โ
โ "machine learning" ไฝไธบๆดไฝ็่งฃ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
... (Layer 3, 4, 5) ...
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Layer 6: Self-Attention (ๆๅไธๅฑ) โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ ๆฏไธช่ฏ็ๅ้็ฐๅจๅ
ๅซไบ๏ผ โ
โ - ่ชๅทฑ็่ฏญไน โ
โ - ไธไธๆไฟกๆฏ โ
โ - ๆดไธชๅฅๅญ็ๅซไน โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
ๆ็ป่พๅบ๏ผ
[CLS]: [0.234, 0.567, -0.890, ...] # ๆดๆฐๅ๏ผๅ
ๅซๅ
จๅฅไฟกๆฏ
machine: [0.345, -0.678, 0.123, ...] # ๅ
ๅซ "learning" ็ไฟกๆฏ
learning: [0.456, 0.789, -0.234, ...] # ๅ
ๅซ "machine" ็ไฟกๆฏ
...
ๅฝข็ถ๏ผ(1, 10, 384)
ๆนๆฌก tokens ็ปดๅบฆ
""")
# ============================================================================
# Step 5: Mean Pooling - ๅๅนถๆไธไธชๅฅๅญๅ้
# ============================================================================
print("\n" + "=" * 80)
print("Step 5: Mean Pooling - ๆๅคไธช่ฏๅ้ๅๅนถๆไธไธชๅฅๅญๅ้")
print("=" * 80)
print("""
้ฎ้ข๏ผ็ฐๅจๆ 10 ไธช่ฏ๏ผๆฏไธช่ฏไธไธชๅ้
ๅฆไฝๅๆ 1 ไธชๅฅๅญๅ้๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ไปฃ็ ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def mean_pooling(token_embeddings, attention_mask):
\"\"\"
ๅฏนๆๆ่ฏๅ้ๆฑๅนณๅ๏ผ่่ attention_mask๏ผ
\"\"\"
# token_embeddings: (1, 10, 384)
# attention_mask: (1, 10)
# ๆฉๅฑ mask ็็ปดๅบฆไปฅๅน้
embeddings
# (1, 10) โ (1, 10, 1) โ (1, 10, 384)
input_mask_expanded = attention_mask.unsqueeze(-1).expand(
token_embeddings.size()
).float()
# ๅฐ embeddings ไธ mask ็ธไน๏ผๅฟฝ็ฅๅกซๅ
้จๅ๏ผ
# ็ถๅๅฏนๆๆ่ฏๆฑๅ
sum_embeddings = torch.sum(
token_embeddings * input_mask_expanded,
dim=1 # ๅจ token ็ปดๅบฆๆฑๅ
)
# ่ฎก็ฎๆๆ token ็ๆฐ้
sum_mask = torch.clamp(
input_mask_expanded.sum(dim=1),
min=1e-9 # ้ฟๅ
้ค้ถ
)
# ๆฑๅนณๅ
mean_embeddings = sum_embeddings / sum_mask
return mean_embeddings
# ไฝฟ็จ
sentence_embedding = mean_pooling(
token_embeddings,
encoded_input['attention_mask']
)
print(sentence_embedding.shape) # torch.Size([1, 384])
# ๆนๆฌก ็ปดๅบฆ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ๅ
ทไฝ่ฎก็ฎ๏ผ็ฎๅ็คบไพ๏ผ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
10 ไธช่ฏๅ้๏ผๆฏไธช 384 ็ปด๏ผ
Token 1: [0.234, 0.567, -0.890, ..., 0.123]
Token 2: [0.345, -0.678, 0.123, ..., 0.234]
Token 3: [0.456, 0.789, -0.234, ..., 0.345]
...
Token 10: [0.567, 0.890, 0.345, ..., 0.456]
ๆฑๅนณๅ๏ผๅฏนๆฏไธ็ปดๅๅซๅนณๅ๏ผ๏ผ
็ฌฌ1็ปด: (0.234 + 0.345 + 0.456 + ... + 0.567) / 10 = 0.412
็ฌฌ2็ปด: (0.567 - 0.678 + 0.789 + ... + 0.890) / 10 = 0.523
็ฌฌ3็ปด: (-0.890 + 0.123 - 0.234 + ... + 0.345) / 10 = -0.089
...
็ฌฌ384็ปด: (0.123 + 0.234 + 0.345 + ... + 0.456) / 10 = 0.289
ๅฅๅญๅ้ = [0.412, 0.523, -0.089, ..., 0.289] (384็ปด)
""")
# ============================================================================
# Step 6: ๅฝไธๅ๏ผNormalization๏ผ
# ============================================================================
print("\n" + "=" * 80)
print("Step 6: L2 ๅฝไธๅ - ๅฐๅ้้ฟๅบฆ็ผฉๆพๅฐ 1")
print("=" * 80)
print("""
ไปฃ็ ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
import torch.nn.functional as F
# L2 ๅฝไธๅ
sentence_embedding = F.normalize(
sentence_embedding,
p=2, # L2 ่ๆฐ
dim=1 # ๅจ็นๅพ็ปดๅบฆๅฝไธๅ
)
print(sentence_embedding.shape) # torch.Size([1, 384])
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ๅฝไธๅ็ไฝ็จ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ๅฝไธๅๅ็ๅ้๏ผ
v = [0.412, 0.523, -0.089, ..., 0.289]
้ฟๅบฆ ||v|| = โ(0.412ยฒ + 0.523ยฒ + ... + 0.289ยฒ) = 2.37
ๅฝไธๅๅ็ๅ้๏ผ
v_norm = v / ||v||
v_norm = [0.412/2.37, 0.523/2.37, ..., 0.289/2.37]
= [0.174, 0.221, -0.038, ..., 0.122]
้ฟๅบฆ ||v_norm|| = 1 โ
ๅฅฝๅค๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
ๆๆๅ้้ฟๅบฆ็ธๅ๏ผ้ฝๆฏ1๏ผ๏ผๆนไพฟๆฏ่พ
โ
ไฝๅผฆ็ธไผผๅบฆ = ็น็งฏ๏ผ่ฎก็ฎๆดๅฟซ๏ผ
cos_sim(a, b) = aยทb / (||a|| ร ||b||)
ๅฆๆๅฝไธๅ: cos_sim(a, b) = aยทb โ ็ฎๅไบ๏ผ
โ
ๆถ้คๅ้้ฟๅบฆ็ๅฝฑๅ๏ผๅชๅ
ณๆณจๆนๅ
""")
# ============================================================================
# Step 7: ๆ็ป่พๅบ
# ============================================================================
print("\n" + "=" * 80)
print("Step 7: ๅพๅฐๆ็ป็ๅฅๅญๅ้")
print("=" * 80)
print("""
ๆ็ป็ปๆ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
# ่ฝฌๆขไธบ numpy ๆฐ็ป๏ผๆนไพฟไฝฟ็จ๏ผ
final_vector = sentence_embedding.cpu().numpy()[0]
print(final_vector.shape) # (384,)
print(final_vector[:5]) # ๅ5ไธชๆฐๅญ
# [0.174, 0.221, -0.038, 0.095, 0.312]
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
่ฟๅฐฑๆฏๆ็ป็ๅฅๅญๅ้๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
่พๅ
ฅ: "Machine learning is a subset of artificial intelligence"
่พๅบ: [0.174, 0.221, -0.038, ..., 0.122] (384 ไธชๆฐๅญ)
่ฟไธชๅ้ๅ
ๅซไบ๏ผ
โ
ๆฏไธช่ฏ็่ฏญไน
โ
่ฏไธ่ฏไน้ด็ๅ
ณ็ณป
โ
ๆดไธชๅฅๅญ็ๅซไน
ๅฏไปฅ็จๆฅ๏ผ
โ
่ฎก็ฎไธๅ
ถไปๅฅๅญ็็ธไผผๅบฆ
โ
ๅญๅ
ฅๅ้ๆฐๆฎๅบ
โ
่ฟ่ก่ฏญไนๆ็ดข
""")
# ============================================================================
# ๅฎๆดไปฃ็ ๆฑๆป
# ============================================================================
print("\n" + "=" * 80)
print("๐ ๅฎๆดไปฃ็ ๆฑๆป๏ผๅฎ้
ๅฏ่ฟ่ก๏ผ")
print("=" * 80)
print("""
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
def text_to_vector(text):
\"\"\"
ๅฎๆด็ๆๅญ่ฝฌๅ้ๆต็จ
\"\"\"
# Step 1: ๅ ่ฝฝๆจกๅ
model_name = "sentence-transformers/all-MiniLM-L6-v2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
model.eval()
# Step 2: ๅ่ฏ
encoded_input = tokenizer(
text,
padding=True,
truncation=True,
max_length=512,
return_tensors='pt'
)
# Step 3 & 4: ้่ฟๆจกๅ๏ผEmbedding + Transformer๏ผ
with torch.no_grad():
outputs = model(**encoded_input)
token_embeddings = outputs.last_hidden_state
# Step 5: Mean Pooling
attention_mask = encoded_input['attention_mask']
input_mask_expanded = attention_mask.unsqueeze(-1).expand(
token_embeddings.size()
).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, dim=1)
sum_mask = torch.clamp(input_mask_expanded.sum(dim=1), min=1e-9)
sentence_embedding = sum_embeddings / sum_mask
# Step 6: ๅฝไธๅ
sentence_embedding = F.normalize(sentence_embedding, p=2, dim=1)
# Step 7: ่ฝฌไธบ numpy
return sentence_embedding.cpu().numpy()[0]
# ไฝฟ็จ็คบไพ๏ผ
text = "Machine learning is a subset of artificial intelligence"
vector = text_to_vector(text)
print(f"่พๅ
ฅ: {text}")
print(f"ๅ้็ปดๅบฆ: {vector.shape}") # (384,)
print(f"ๅ10ไธชๆฐๅญ: {vector[:10]}")
print(f"ๅ้้ฟๅบฆ: {np.linalg.norm(vector)}") # ๅบ่ฏฅๆฏ 1.0
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ไฝ ็้กน็ฎไธญ็็ฎๅ่ฐ็จ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
from langchain_community.embeddings import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
vector = embeddings.embed_query(text)
# โ ่ฟไธ่กๅ
้จๆง่กไบไธ้ขๆๆ 7 ไธชๆญฅ้ชค๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
""")
# ============================================================================
# ๅ
ณ้ฎๆญฅ้ชคๆถ้ดๅๆ
# ============================================================================
print("\n" + "=" * 80)
print("โฑ๏ธ ๅๆญฅ้ชค่ๆถๅๆ")
print("=" * 80)
print("""
ๅ่ฎพๅค็ไธไธชๅฅๅญ๏ผ10ไธช่ฏ๏ผ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Step 1: ๅ ่ฝฝๆจกๅ 0.5-2็ง (ๅช้ไธๆฌก๏ผๅฏๅค็จ)
Step 2: ๅ่ฏ <1ๆฏซ็ง (้ๅธธๅฟซ)
Step 3: Embedding ๆฅ่กจ <1ๆฏซ็ง (็ฉ้ต็ดขๅผ)
Step 4: Transformer ๅค็ 10-50ๆฏซ็ง (6ๅฑ่ฎก็ฎ๏ผๆๆ
ข)
Step 5: Mean Pooling <1ๆฏซ็ง (็ฎๅๅนณๅ)
Step 6: ๅฝไธๅ <1ๆฏซ็ง (็ฎๅ้คๆณ)
Step 7: ่ฝฌๆขๆ ผๅผ <1ๆฏซ็ง
ๆป่ๆถ: 10-50ๆฏซ็ง (GPU) ๆ 50-200ๆฏซ็ง (CPU)
ๆน้ๅค็๏ผ20ไธชๅฅๅญ๏ผ:
ๅไธชๅค็: 20 ร 50ms = 1000ms
ๆน้ๅค็: 100ms โ ๅฟซ10ๅ๏ผ(GPUๅนถ่ก)
่ฟๅฐฑๆฏไธบไปไน่ฆๆน้ๅ้ๅ๏ผ
""")
print("\n" + "=" * 80)
print("โ
ๆๅญ่ฝฌๅ้็ๅฎ็ฐๆญฅ้ชค่ฎฒ่งฃๅฎๆฏ๏ผ")
print("=" * 80)
print("""
ๆ ธๅฟๆญฅ้ชคๅ้กพ๏ผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
ๆๅญ
โ Step 1: ๅ ่ฝฝๆจกๅ
Tokenizer + Model
โ Step 2: ๅ่ฏ
Token IDs: [101, 3698, 4083, ...]
โ Step 3: Embedding ๆฅ่กจ
ๅๅงๅ้: [(10, 384)]
โ Step 4: Transformer ๅค็
ๆดๆฐๅ้: [(10, 384)] ๅ
ๅซไธไธๆไฟกๆฏ
โ Step 5: Mean Pooling
ๅฅๅญๅ้: [(1, 384)]
โ Step 6: ๅฝไธๅ
ๅฝไธๅๅ้: [(1, 384)] ้ฟๅบฆ=1
โ Step 7: ่พๅบ
ๆ็ปๅ้: [0.174, 0.221, ..., 0.122]
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
็ฐๅจไฝ ็ฅ้ไบๆฏไธๆญฅ็ๅ
ทไฝๆไฝ๏ผ
""")
print()
|