Spaces:
Running
Running
| import gradio as gr | |
| from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| import os | |
| import shutil | |
| import time | |
| from src.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| AutoEvalColumn, | |
| ModelType, | |
| fields, | |
| WeightType, | |
| Precision | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
| from src.submission.submit import add_new_eval | |
| loggedin = False | |
| def check_login(profile: gr.OAuthProfile | None) -> bool: | |
| if profile is None: | |
| return False | |
| return True | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| ### Space initialisation | |
| def cleanup_old_cache(): | |
| """Remove old cache directories to free up space""" | |
| cache_dirs = [EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH] | |
| for cache_dir in cache_dirs: | |
| if os.path.exists(cache_dir): | |
| # Check if cache is older than 6 hours | |
| cache_age = time.time() - os.path.getctime(cache_dir) | |
| if cache_age > 21600: # 6 hours in seconds | |
| print(f"Removing old cache: {cache_dir}") | |
| shutil.rmtree(cache_dir, ignore_errors=True) | |
| def safe_download_dataset(repo_id, local_dir, repo_type="dataset"): | |
| """Download dataset only if not already cached or cache is stale""" | |
| try: | |
| # Check if directory exists and has recent data | |
| if os.path.exists(local_dir) and os.listdir(local_dir): | |
| cache_age = time.time() - os.path.getctime(local_dir) | |
| if cache_age < 3600: # Less than 1 hour old | |
| print(f"Using cached data: {local_dir}") | |
| return | |
| print(f"Downloading: {repo_id} to {local_dir}") | |
| snapshot_download( | |
| repo_id=repo_id, | |
| local_dir=local_dir, | |
| repo_type=repo_type, | |
| tqdm_class=None, | |
| etag_timeout=30, | |
| token=TOKEN, | |
| resume_download=True, | |
| force_download=False | |
| ) | |
| except Exception as e: | |
| print(f"Download failed for {repo_id}: {e}") | |
| if not os.path.exists(local_dir) or not os.listdir(local_dir): | |
| restart_space() | |
| # Clean up old cache to free space | |
| cleanup_old_cache() | |
| # Download datasets with caching | |
| safe_download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH, "dataset") | |
| safe_download_dataset(RESULTS_REPO, EVAL_RESULTS_PATH, "dataset") | |
| LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
| ( | |
| finished_eval_queue_df, | |
| running_eval_queue_df, | |
| pending_eval_queue_df, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| def init_leaderboard(dataframe): | |
| # if dataframe is None or dataframe.empty: | |
| # raise ValueError("Leaderboard DataFrame is empty or None.") | |
| # print(dataframe.columns) | |
| return Leaderboard( | |
| value=dataframe, | |
| datatype=[c.type for c in fields(AutoEvalColumn)], | |
| select_columns=SelectColumns( | |
| default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
| cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
| label="Select Columns to Display:", | |
| ), | |
| search_columns=[AutoEvalColumn.model.name], | |
| hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
| filter_columns=[ | |
| # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), | |
| # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), | |
| # ColumnFilter( | |
| # AutoEvalColumn.params.name, | |
| # type="slider", | |
| # min=0.01, | |
| # max=150, | |
| # label="Select the number of parameters (B)", | |
| # ), | |
| # ColumnFilter( | |
| # AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True | |
| # ), | |
| ], | |
| bool_checkboxgroup_label="Hide models", | |
| interactive=False, | |
| ) | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("๐ LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
| leaderboard = init_leaderboard(LEADERBOARD_DF) | |
| with gr.TabItem("๐ About", elem_id="llm-benchmark-tab-table", id=2): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| with gr.TabItem("๐ Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
| # with gr.Column(): | |
| # with gr.Row(): | |
| # gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| # with gr.Column(): | |
| # with gr.Accordion( | |
| # f"โ Finished Evaluations ({len(finished_eval_queue_df)})", | |
| # open=False, | |
| # ): | |
| # with gr.Row(): | |
| # finished_eval_table = gr.components.Dataframe( | |
| # value=finished_eval_queue_df, | |
| # headers=EVAL_COLS, | |
| # datatype=EVAL_TYPES, | |
| # row_count=5, | |
| # ) | |
| # with gr.Accordion( | |
| # f"๐ Running Evaluation Queue ({len(running_eval_queue_df)})", | |
| # open=False, | |
| # ): | |
| # with gr.Row(): | |
| # running_eval_table = gr.components.Dataframe( | |
| # value=running_eval_queue_df, | |
| # headers=EVAL_COLS, | |
| # datatype=EVAL_TYPES, | |
| # row_count=5, | |
| # ) | |
| # with gr.Accordion( | |
| # f"โณ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
| # open=False, | |
| # ): | |
| # with gr.Row(): | |
| # pending_eval_table = gr.components.Dataframe( | |
| # value=pending_eval_queue_df, | |
| # headers=EVAL_COLS, | |
| # datatype=EVAL_TYPES, | |
| # row_count=5, | |
| with gr.Row(): | |
| gr.Markdown("# โ๏ธโจ Submit your model here!", elem_classes="markdown-text") | |
| login_button = gr.LoginButton(elem_id="oauth-button") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Model name") | |
| revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
| model_type = gr.Dropdown( | |
| choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
| label="Model type", | |
| multiselect=False, | |
| value=None, | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| precision = gr.Dropdown( | |
| choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
| label="Precision", | |
| multiselect=False, | |
| value="float16", | |
| interactive=True, | |
| ) | |
| weight_type = gr.Dropdown( | |
| choices=[i.value.name for i in WeightType], | |
| label="Weights type", | |
| multiselect=False, | |
| value="Original", | |
| interactive=True, | |
| ) | |
| base_model_name_textbox = gr.Textbox(label="ะัะณะฐะฝะธะทะฐัะธั") | |
| ans_file = gr.File(label="Arena Hard Answer File", file_types=[".json",".jsonl"]) | |
| # loggedin = login_button.click(check_login) | |
| submit_button = gr.Button("Submit Eval") | |
| submission_result = gr.Markdown() | |
| submit_button.click( | |
| add_new_eval, | |
| [ | |
| model_name_textbox, | |
| base_model_name_textbox, | |
| revision_name_textbox, | |
| precision, | |
| weight_type, | |
| model_type, | |
| ans_file, | |
| ], | |
| submission_result, | |
| ) | |
| with gr.Row(): | |
| with gr.Accordion("๐ Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() |