|
|
import os, io, re, json, math, struct, tempfile, traceback |
|
|
from pathlib import Path |
|
|
from typing import List, Tuple, Dict |
|
|
|
|
|
import numpy as np |
|
|
import gradio as gr |
|
|
|
|
|
import matplotlib |
|
|
matplotlib.use("Agg") |
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
import imageio.v2 as imageio |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_DOCX_OK = False |
|
|
try: |
|
|
from docx import Document |
|
|
_DOCX_OK = True |
|
|
except Exception: |
|
|
_DOCX_OK = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from sklearn.feature_extraction.text import HashingVectorizer |
|
|
from sklearn.decomposition import PCA |
|
|
|
|
|
_ST_MODEL = None |
|
|
def _load_st_model(): |
|
|
global _ST_MODEL |
|
|
if _ST_MODEL is not None: |
|
|
return _ST_MODEL |
|
|
try: |
|
|
from sentence_transformers import SentenceTransformer |
|
|
_ST_MODEL = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") |
|
|
return _ST_MODEL |
|
|
except Exception: |
|
|
return None |
|
|
|
|
|
def embed_texts(texts: List[str], prefer_sentence_transformer: bool = True) -> Tuple[np.ndarray, str]: |
|
|
texts = [t if isinstance(t, str) else str(t) for t in texts] |
|
|
|
|
|
if prefer_sentence_transformer: |
|
|
model = _load_st_model() |
|
|
if model is not None: |
|
|
try: |
|
|
vecs = model.encode( |
|
|
texts, batch_size=32, show_progress_bar=False, |
|
|
convert_to_numpy=True, normalize_embeddings=True |
|
|
) |
|
|
return vecs.astype(np.float32), "sentence-transformers/all-MiniLM-L6-v2" |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
hv = HashingVectorizer(n_features=768, alternate_sign=False, norm=None) |
|
|
X = hv.transform(texts) |
|
|
vecs = X.toarray().astype(np.float32) |
|
|
norms = np.linalg.norm(vecs, axis=1, keepdims=True) + 1e-9 |
|
|
vecs = vecs / norms |
|
|
return vecs, "HashingVectorizer(768d) fallback" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _basic_sentence_split(text: str) -> List[str]: |
|
|
rough = re.split(r'[\n\r]+|(?<=[\.\!\?])\s+', text.strip()) |
|
|
out = [] |
|
|
for s in rough: |
|
|
s = s.strip() |
|
|
if s: |
|
|
out.append(s) |
|
|
return out |
|
|
|
|
|
def read_txt_bytes(b: bytes) -> str: |
|
|
try: |
|
|
return b.decode("utf-8") |
|
|
except Exception: |
|
|
return b.decode("latin-1", errors="ignore") |
|
|
|
|
|
def read_docx_bytes(b: bytes) -> List[str]: |
|
|
if not _DOCX_OK: |
|
|
raise RuntimeError("python-docx not installed in this Space.") |
|
|
bio = io.BytesIO(b) |
|
|
doc = Document(bio) |
|
|
paras = [p.text.strip() for p in doc.paragraphs] |
|
|
return [p for p in paras if p and not p.isspace()] |
|
|
|
|
|
def to_units(raw_text: str, mode: str) -> List[str]: |
|
|
raw_text = raw_text.strip() |
|
|
if not raw_text: |
|
|
return [] |
|
|
if mode == "sentences": |
|
|
return _basic_sentence_split(raw_text) |
|
|
paras = [p.strip() for p in re.split(r"\n\s*\n+", raw_text) if p.strip()] |
|
|
return paras |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DEMO_CORPUS = """ |
|
|
In the beginning, people stored knowledge in libraries, then in databases, and now in neural networks. |
|
|
Compression isn’t just saving space — it’s choosing what matters. |
|
|
A constellation is a pattern you can navigate. |
|
|
Entropy is a measure of surprise, and learning is surprise turning into structure. |
|
|
|
|
|
A system that learns from compressed data never needs the original. |
|
|
It doesn’t memorize pixels; it memorizes geometry. |
|
|
It doesn’t hoard text; it extracts signals. |
|
|
The question isn’t “Can it compress?” but “Can it learn after compressing?” |
|
|
|
|
|
Investors love seeing systems move. |
|
|
They love curves that fall. |
|
|
They love maps that cluster. |
|
|
They love a demo that feels alive. |
|
|
|
|
|
This demo builds a codec from your dataset, |
|
|
then trains a model exclusively on the codec’s byte stream. |
|
|
No raw text is used during training. |
|
|
Only the compressed stream exists. |
|
|
|
|
|
We call the clusters constellations. |
|
|
We call the structure harvestable. |
|
|
We call the drop in entropy visible proof. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def softmax(x, axis=-1): |
|
|
x = x - np.max(x, axis=axis, keepdims=True) |
|
|
ex = np.exp(x) |
|
|
return ex / (np.sum(ex, axis=axis, keepdims=True) + 1e-9) |
|
|
|
|
|
def global_range_entropy(p: np.ndarray) -> float: |
|
|
m = p.mean(axis=0) |
|
|
m_safe = np.clip(m, 1e-12, None) |
|
|
return float(-(m_safe * np.log(m_safe)).sum()) |
|
|
|
|
|
def soft_slab_entropy(z: np.ndarray, U: np.ndarray, bins: int = 8, tau: float = 5.0) -> float: |
|
|
t = z @ U.T |
|
|
K = U.shape[0] |
|
|
Hs = [] |
|
|
for j in range(K): |
|
|
tj = t[:, j] |
|
|
tmin, tmax = float(tj.min()), float(tj.max()) |
|
|
if not np.isfinite(tmin) or not np.isfinite(tmax) or tmax - tmin < 1e-6: |
|
|
Hs.append(0.0) |
|
|
continue |
|
|
centers = np.linspace(tmin, tmax, bins) |
|
|
dist2 = (tj[:, None] - centers[None, :]) ** 2 |
|
|
weights = softmax(-tau * dist2, axis=1) |
|
|
hist = weights.mean(axis=0) |
|
|
hist = np.clip(hist, 1e-12, None) |
|
|
H = float(-(hist * np.log(hist)).sum()) |
|
|
Hs.append(H) |
|
|
return float(np.mean(Hs)) if Hs else 0.0 |
|
|
|
|
|
def kmeans_plus_plus_init(z: np.ndarray, K: int, rng: np.random.RandomState) -> np.ndarray: |
|
|
N, d = z.shape |
|
|
inds = [rng.randint(0, N)] |
|
|
centers = [z[inds[0]]] |
|
|
cos0 = np.clip(z @ centers[0], -1.0, 1.0) |
|
|
d2 = np.clip(1.0 - cos0, 1e-12, None) |
|
|
|
|
|
for _ in range(1, K): |
|
|
s = d2.sum() |
|
|
if not np.isfinite(s) or s <= 0: |
|
|
probs = np.full(N, 1.0 / N) |
|
|
else: |
|
|
probs = np.clip(d2 / s, 0.0, None) |
|
|
probs = probs / (probs.sum() + 1e-12) |
|
|
next_idx = rng.choice(N, p=probs) |
|
|
inds.append(next_idx) |
|
|
centers.append(z[next_idx]) |
|
|
|
|
|
cos_new = np.clip(z @ z[next_idx], -1.0, 1.0) |
|
|
d2 = np.minimum(d2, np.clip(1.0 - cos_new, 1e-12, None)) |
|
|
|
|
|
U = np.stack(centers, axis=0) |
|
|
U = U / (np.linalg.norm(U, axis=1, keepdims=True) + 1e-9) |
|
|
return U |
|
|
|
|
|
def chr_optimize(z: np.ndarray, K: int = 8, iters: int = 30, beta: float = 12.0, |
|
|
bins: int = 8, tau: float = 5.0, seed: int = 42): |
|
|
rng = np.random.RandomState(seed) |
|
|
N, d = z.shape |
|
|
U = kmeans_plus_plus_init(z, K, rng) if N >= K else np.pad(z, ((0, max(0, K - N)), (0, 0)), mode="wrap")[:K] |
|
|
U = U / (np.linalg.norm(U, axis=1, keepdims=True) + 1e-9) |
|
|
|
|
|
logits0 = beta * (z @ U.T) |
|
|
p0 = softmax(logits0, axis=1) |
|
|
Hg_traj = [global_range_entropy(p0)] |
|
|
Hs_traj = [soft_slab_entropy(z, U, bins=bins, tau=tau)] |
|
|
|
|
|
for _ in range(iters): |
|
|
logits = beta * (z @ U.T) |
|
|
p = softmax(logits, axis=1) |
|
|
numer = p.T @ z |
|
|
denom = p.sum(axis=0)[:, None] + 1e-9 |
|
|
U = numer / denom |
|
|
U = U / (np.linalg.norm(U, axis=1, keepdims=True) + 1e-9) |
|
|
Hg_traj.append(global_range_entropy(p)) |
|
|
Hs_traj.append(soft_slab_entropy(z, U, bins=bins, tau=tau)) |
|
|
|
|
|
logits = beta * (z @ U.T) |
|
|
p = softmax(logits, axis=1) |
|
|
return U, p, np.array(Hg_traj), np.array(Hs_traj) |
|
|
|
|
|
def compute_mhep(Hg_traj: np.ndarray, Hs_traj: np.ndarray, K: int, bins: int, w_g: float = 0.7, w_s: float = 0.3) -> float: |
|
|
if len(Hg_traj) < 2 or len(Hs_traj) < 2: |
|
|
return 0.0 |
|
|
maxHg = math.log(max(K, 2)) |
|
|
maxHs = math.log(max(bins, 2)) |
|
|
drop_g = max(0.0, float(Hg_traj[0] - Hg_traj[-1])) / (maxHg + 1e-9) |
|
|
drop_s = max(0.0, float(Hs_traj[0] - Hs_traj[-1])) / (maxHs + 1e-9) |
|
|
return float(np.clip(100.0 * (w_g * drop_g + w_s * drop_s), 0.0, 100.0)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def make_radial_bins(radials: np.ndarray, B: int = 64) -> np.ndarray: |
|
|
edges = np.quantile(radials, np.linspace(0, 1, B + 1)) |
|
|
for i in range(1, len(edges)): |
|
|
if edges[i] <= edges[i - 1]: |
|
|
edges[i] = edges[i - 1] + 1e-6 |
|
|
return edges.astype(np.float32) |
|
|
|
|
|
def quantize_radial(r: float, edges: np.ndarray) -> int: |
|
|
b = np.searchsorted(edges, r, side="right") - 1 |
|
|
return int(np.clip(b, 0, len(edges) - 2)) |
|
|
|
|
|
def pack_codes_to_bytes(labels: np.ndarray, bins: np.ndarray) -> bytes: |
|
|
out = bytearray() |
|
|
for c, b in zip(labels.tolist(), bins.tolist()): |
|
|
out.append(int(c) & 0xFF) |
|
|
out.append(int(b) & 0xFF) |
|
|
return bytes(out) |
|
|
|
|
|
def save_codes_and_codec(code_bytes: bytes, codec: Dict, out_dir: str) -> Tuple[str, str]: |
|
|
os.makedirs(out_dir, exist_ok=True) |
|
|
bin_path = os.path.join(out_dir, "codes.bin") |
|
|
meta_path = os.path.join(out_dir, "codec.json") |
|
|
with open(bin_path, "wb") as f: |
|
|
f.write(b"CHRC") |
|
|
f.write(struct.pack("<I", 1)) |
|
|
f.write(code_bytes) |
|
|
with open(meta_path, "w", encoding="utf-8") as f: |
|
|
json.dump(codec, f, indent=2) |
|
|
return bin_path, meta_path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plot_entropy(Hg, Hs, out_path): |
|
|
plt.figure(figsize=(6,4)) |
|
|
plt.plot(Hg, label="Global range entropy") |
|
|
plt.plot(Hs, label="Slab entropy") |
|
|
plt.xlabel("Iteration"); plt.ylabel("Entropy") |
|
|
plt.title("Entropy drops during CHR compression") |
|
|
plt.legend() |
|
|
plt.tight_layout() |
|
|
plt.savefig(out_path, dpi=150) |
|
|
plt.close() |
|
|
|
|
|
def plot_constellation_map(z, U, labels, out_path): |
|
|
if z.shape[1] > 2: |
|
|
pca = PCA(n_components=2, random_state=0) |
|
|
Z2 = pca.fit_transform(z) |
|
|
U2 = pca.transform(U) |
|
|
else: |
|
|
Z2, U2 = z, U |
|
|
plt.figure(figsize=(6,5)) |
|
|
plt.scatter(Z2[:,0], Z2[:,1], s=14, alpha=0.8, c=labels) |
|
|
plt.scatter(U2[:,0], U2[:,1], marker="*", s=200) |
|
|
plt.title("Constellation map (compressed geometry)") |
|
|
plt.xlabel("PC1"); plt.ylabel("PC2") |
|
|
plt.tight_layout() |
|
|
plt.savefig(out_path, dpi=150) |
|
|
plt.close() |
|
|
|
|
|
def plot_training_curves(losses, ppls, out_path): |
|
|
plt.figure(figsize=(6,4)) |
|
|
plt.plot(losses, label="Loss") |
|
|
plt.plot(ppls, label="Perplexity") |
|
|
plt.xlabel("Checkpoint") |
|
|
plt.title("Learning on compressed stream") |
|
|
plt.legend() |
|
|
plt.tight_layout() |
|
|
plt.savefig(out_path, dpi=150) |
|
|
plt.close() |
|
|
|
|
|
def plot_rollout_tracks(seq_bytes: List[int], out_path, title="Compressed rollout"): |
|
|
cs = seq_bytes[0::2] |
|
|
bs = seq_bytes[1::2] |
|
|
plt.figure(figsize=(8,3.6)) |
|
|
plt.plot(cs, label="Constellation id") |
|
|
plt.plot(bs, label="Radial bin") |
|
|
plt.ylim(-2, 260) |
|
|
plt.xlabel("Step"); plt.title(title) |
|
|
plt.legend() |
|
|
plt.tight_layout() |
|
|
plt.savefig(out_path, dpi=150) |
|
|
plt.close() |
|
|
|
|
|
def plot_before_after_tracks(before_bytes: List[int], after_bytes: List[int], out_path): |
|
|
b_c = before_bytes[0::2]; b_b = before_bytes[1::2] |
|
|
a_c = after_bytes[0::2]; a_b = after_bytes[1::2] |
|
|
plt.figure(figsize=(10,4)) |
|
|
plt.subplot(1,2,1) |
|
|
plt.plot(b_c, label="Constellation") |
|
|
plt.plot(b_b, label="Radial bin") |
|
|
plt.title("BEFORE (untrained)") |
|
|
plt.ylim(-2, 260) |
|
|
plt.legend() |
|
|
|
|
|
plt.subplot(1,2,2) |
|
|
plt.plot(a_c, label="Constellation") |
|
|
plt.plot(a_b, label="Radial bin") |
|
|
plt.title("AFTER (trained)") |
|
|
plt.ylim(-2, 260) |
|
|
plt.legend() |
|
|
|
|
|
plt.suptitle("Rollout comparison on compressed symbols") |
|
|
plt.tight_layout() |
|
|
plt.savefig(out_path, dpi=150) |
|
|
plt.close() |
|
|
|
|
|
def rollout_to_xy(seq_bytes: List[int], U: np.ndarray, radial_edges: np.ndarray) -> np.ndarray: |
|
|
""" |
|
|
Convert (constellation id, radial bin) stream into approximate vectors r*U[c], |
|
|
then project to 2D using PCA fitted on U only (codec-only visualization). |
|
|
""" |
|
|
cs = np.array(seq_bytes[0::2], dtype=np.int32) |
|
|
bs = np.array(seq_bytes[1::2], dtype=np.int32) |
|
|
K, d = U.shape |
|
|
B = len(radial_edges) - 1 |
|
|
|
|
|
cs = np.clip(cs, 0, K-1) |
|
|
bs = np.clip(bs, 0, B-1) |
|
|
|
|
|
|
|
|
mids = 0.5 * (radial_edges[bs] + radial_edges[bs + 1]) |
|
|
V = U[cs] * mids[:, None] |
|
|
|
|
|
pca = PCA(n_components=2, random_state=0) |
|
|
U2 = pca.fit_transform(U) |
|
|
V2 = pca.transform(V) |
|
|
return V2, U2 |
|
|
|
|
|
def make_rollout_gif(seq_bytes: List[int], U: np.ndarray, radial_edges: np.ndarray, |
|
|
out_path: str, title: str = "Compressed rollout (animated)", |
|
|
stride: int = 2, fps: int = 12): |
|
|
V2, U2 = rollout_to_xy(seq_bytes, U, radial_edges) |
|
|
frames = [] |
|
|
|
|
|
xmin = min(V2[:,0].min(), U2[:,0].min()) - 0.2 |
|
|
xmax = max(V2[:,0].max(), U2[:,0].max()) + 0.2 |
|
|
ymin = min(V2[:,1].min(), U2[:,1].min()) - 0.2 |
|
|
ymax = max(V2[:,1].max(), U2[:,1].max()) + 0.2 |
|
|
|
|
|
for t in range(1, len(V2), stride): |
|
|
fig = plt.figure(figsize=(6,5)) |
|
|
plt.scatter(U2[:,0], U2[:,1], marker="*", s=180) |
|
|
plt.plot(V2[:t,0], V2[:t,1], linewidth=2) |
|
|
plt.scatter(V2[t-1,0], V2[t-1,1], s=80) |
|
|
plt.title(title) |
|
|
plt.xlim(xmin, xmax); plt.ylim(ymin, ymax) |
|
|
plt.xlabel("PC1 (codec space)"); plt.ylabel("PC2 (codec space)") |
|
|
plt.tight_layout() |
|
|
|
|
|
buf = io.BytesIO() |
|
|
plt.savefig(buf, format="png", dpi=150) |
|
|
plt.close(fig) |
|
|
buf.seek(0) |
|
|
frames.append(imageio.imread(buf)) |
|
|
|
|
|
imageio.mimsave(out_path, frames, fps=fps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
|
|
class ByteStreamDataset(Dataset): |
|
|
def __init__(self, bin_path: str, block_size: int = 256): |
|
|
with open(bin_path, "rb") as f: |
|
|
blob = f.read() |
|
|
assert blob[:4] == b"CHRC" |
|
|
ver = int.from_bytes(blob[4:8], "little") |
|
|
assert ver == 1 |
|
|
data = blob[8:] |
|
|
self.data = torch.tensor(list(data), dtype=torch.long) |
|
|
self.block_size = int(block_size) |
|
|
|
|
|
def __len__(self): |
|
|
return max(0, len(self.data) - self.block_size - 1) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
x = self.data[idx:idx+self.block_size] |
|
|
y = self.data[idx+1:idx+self.block_size+1] |
|
|
return x, y |
|
|
|
|
|
class TinyByteTransformer(nn.Module): |
|
|
def __init__(self, vocab_size=256, d_model=192, n_layers=4, n_heads=6, block_size=256): |
|
|
super().__init__() |
|
|
self.tok = nn.Embedding(vocab_size, d_model) |
|
|
self.pos = nn.Embedding(block_size, d_model) |
|
|
enc_layer = nn.TransformerEncoderLayer( |
|
|
d_model=d_model, nhead=n_heads, dim_feedforward=4*d_model, |
|
|
dropout=0.1, batch_first=True |
|
|
) |
|
|
self.tr = nn.TransformerEncoder(enc_layer, num_layers=n_layers) |
|
|
self.lm = nn.Linear(d_model, vocab_size) |
|
|
self.block_size = block_size |
|
|
|
|
|
def forward(self, x): |
|
|
B, T = x.shape |
|
|
pos = torch.arange(T, device=x.device).unsqueeze(0).expand(B, T) |
|
|
h = self.tok(x) + self.pos(pos) |
|
|
mask = torch.triu(torch.ones(T, T, device=x.device), diagonal=1).bool() |
|
|
h = self.tr(h, mask=mask) |
|
|
return self.lm(h) |
|
|
|
|
|
@torch.no_grad() |
|
|
def sample_bytes(model, start: List[int], steps: int, device: str = "cpu", temperature: float = 1.0) -> List[int]: |
|
|
model.eval() |
|
|
seq = start[:] |
|
|
for _ in range(steps): |
|
|
x = torch.tensor(seq[-model.block_size:], dtype=torch.long, device=device).unsqueeze(0) |
|
|
logits = model(x)[0, -1] / max(1e-6, float(temperature)) |
|
|
probs = torch.softmax(logits, dim=-1) |
|
|
nxt = int(torch.multinomial(probs, num_samples=1).item()) |
|
|
seq.append(nxt) |
|
|
return seq |
|
|
|
|
|
def train_on_compressed(bin_path: str, |
|
|
steps: int = 800, |
|
|
batch_size: int = 64, |
|
|
block_size: int = 256, |
|
|
lr: float = 3e-4, |
|
|
device: str = "cpu", |
|
|
log_every: int = 50): |
|
|
ds = ByteStreamDataset(bin_path, block_size=block_size) |
|
|
if len(ds) < 10: |
|
|
raise RuntimeError("Not enough compressed data to train. Use more text or smaller block size.") |
|
|
dl = DataLoader(ds, batch_size=batch_size, shuffle=True, drop_last=True) |
|
|
it = iter(dl) |
|
|
|
|
|
model = TinyByteTransformer(block_size=block_size).to(device) |
|
|
opt = torch.optim.AdamW(model.parameters(), lr=lr) |
|
|
loss_fn = nn.CrossEntropyLoss() |
|
|
|
|
|
losses, ppls = [], [] |
|
|
model.train() |
|
|
for step in range(1, steps+1): |
|
|
try: |
|
|
x, y = next(it) |
|
|
except StopIteration: |
|
|
it = iter(dl) |
|
|
x, y = next(it) |
|
|
|
|
|
x, y = x.to(device), y.to(device) |
|
|
logits = model(x) |
|
|
loss = loss_fn(logits.view(-1, 256), y.view(-1)) |
|
|
|
|
|
opt.zero_grad(set_to_none=True) |
|
|
loss.backward() |
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) |
|
|
opt.step() |
|
|
|
|
|
if step % log_every == 0: |
|
|
l = float(loss.detach().cpu().item()) |
|
|
ppl = float(torch.exp(loss.detach()).cpu().item()) |
|
|
losses.append(l) |
|
|
ppls.append(ppl) |
|
|
|
|
|
return model, losses, ppls |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
STATE = { |
|
|
"units": None, |
|
|
"Z": None, |
|
|
"U": None, |
|
|
"labels": None, |
|
|
"bins": None, |
|
|
"bin_path": None, |
|
|
"meta_path": None, |
|
|
"codec": None, |
|
|
"model": None, |
|
|
} |
|
|
|
|
|
def _bytes_from_upload(file_obj) -> Tuple[bytes, str]: |
|
|
if file_obj is None: |
|
|
return b"", "" |
|
|
if isinstance(file_obj, str) and os.path.exists(file_obj): |
|
|
return Path(file_obj).read_bytes(), os.path.basename(file_obj) |
|
|
if hasattr(file_obj, "name") and os.path.exists(file_obj.name): |
|
|
return Path(file_obj.name).read_bytes(), os.path.basename(file_obj.name) |
|
|
return b"", "upload" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_demo(units_mode: str): |
|
|
units = to_units(DEMO_CORPUS, units_mode) |
|
|
units = [u.strip() for u in units if u.strip()] |
|
|
STATE["units"] = units |
|
|
return f"Loaded **{len(units)}** demo units (built-in corpus)." |
|
|
|
|
|
def ingest_file(file_obj, units_mode: str): |
|
|
try: |
|
|
b, name = _bytes_from_upload(file_obj) |
|
|
if not b: |
|
|
return "Upload a .txt or .docx file to begin." |
|
|
|
|
|
if name.lower().endswith(".docx"): |
|
|
paras = read_docx_bytes(b) |
|
|
raw = "\n\n".join(paras) |
|
|
else: |
|
|
raw = read_txt_bytes(b) |
|
|
|
|
|
units = to_units(raw, units_mode) |
|
|
units = [u.strip() for u in units if u.strip()] |
|
|
if len(units) > 3000: |
|
|
units = units[:3000] |
|
|
|
|
|
STATE["units"] = units |
|
|
return f"Loaded **{len(units)}** units from **{name}**." |
|
|
except Exception as e: |
|
|
return f"Error ingesting file: {e}" |
|
|
|
|
|
def compress_now(K, iters, beta, slab_bins, tau, seed, radial_bins): |
|
|
try: |
|
|
units = STATE.get("units") |
|
|
if not units: |
|
|
return "No units loaded. Upload a file or load the demo corpus.", None, None, None, None |
|
|
|
|
|
Z, backend = embed_texts(units, prefer_sentence_transformer=True) |
|
|
U, p, Hg, Hs = chr_optimize(Z, K=int(K), iters=int(iters), beta=float(beta), |
|
|
bins=int(slab_bins), tau=float(tau), seed=int(seed)) |
|
|
labels = p.argmax(axis=1).astype(np.int32) |
|
|
proj = Z @ U.T |
|
|
radials = proj[np.arange(len(units)), labels].astype(np.float32) |
|
|
|
|
|
edges = make_radial_bins(radials, B=int(radial_bins)) |
|
|
bins_q = np.array([quantize_radial(float(radials[i]), edges) for i in range(len(units))], dtype=np.int32) |
|
|
|
|
|
code_bytes = pack_codes_to_bytes(labels, bins_q) |
|
|
|
|
|
out_dir = tempfile.mkdtemp() |
|
|
codec = { |
|
|
"backend": backend, |
|
|
"K": int(K), |
|
|
"radial_bins": int(radial_bins), |
|
|
"iters": int(iters), |
|
|
"beta": float(beta), |
|
|
"slab_bins": int(slab_bins), |
|
|
"tau": float(tau), |
|
|
"seed": int(seed), |
|
|
"U": U.tolist(), |
|
|
"radial_edges": edges.tolist(), |
|
|
"units_count": int(len(units)), |
|
|
"bytes_per_unit": 2.0, |
|
|
"total_bytes": int(len(code_bytes) + 8), |
|
|
} |
|
|
bin_path, meta_path = save_codes_and_codec(code_bytes, codec, out_dir) |
|
|
|
|
|
STATE.update({ |
|
|
"Z": Z, "U": U, "labels": labels, "bins": bins_q, |
|
|
"bin_path": bin_path, "meta_path": meta_path, "codec": codec |
|
|
}) |
|
|
|
|
|
ent_plot = os.path.join(out_dir, "entropy.png") |
|
|
map_plot = os.path.join(out_dir, "map.png") |
|
|
plot_entropy(Hg, Hs, ent_plot) |
|
|
plot_constellation_map(Z, U, labels, map_plot) |
|
|
|
|
|
mhep = compute_mhep(Hg, Hs, K=int(K), bins=int(slab_bins)) |
|
|
summary_md = ( |
|
|
f"## Compression Complete\n" |
|
|
f"- **Embedding backend:** `{backend}`\n" |
|
|
f"- **Units:** **{len(units)}**\n" |
|
|
f"- **Constellations (K):** **{int(K)}**\n" |
|
|
f"- **Radial bins:** **{int(radial_bins)}**\n" |
|
|
f"- **Compressed stream size:** **{codec['total_bytes']} bytes**\n" |
|
|
f"- **Bytes per unit:** **2.0** (constellation + radial bin)\n" |
|
|
f"- **MHEP score:** **{mhep:.1f}%**\n" |
|
|
f"\n### Investor-proof constraint\n" |
|
|
f"Training input is **only** `codes.bin` (a byte stream)." |
|
|
) |
|
|
|
|
|
return summary_md, ent_plot, map_plot, bin_path, meta_path |
|
|
except Exception as e: |
|
|
return f"Compression error: {e}\n\n{traceback.format_exc()}", None, None, None, None |
|
|
|
|
|
def train_now(train_steps, batch_size, block_size, lr, log_every, temperature, rollout_steps, gif_stride, gif_fps): |
|
|
try: |
|
|
bin_path = STATE.get("bin_path") |
|
|
codec = STATE.get("codec") |
|
|
U = STATE.get("U") |
|
|
if not bin_path or not os.path.exists(bin_path) or codec is None or U is None: |
|
|
return "No compressed stream found. Run compression first.", None, None, None, None |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
|
|
|
with open(bin_path, "rb") as f: |
|
|
blob = f.read() |
|
|
stream = list(blob[8:]) |
|
|
start = stream[:min(len(stream), int(block_size))] |
|
|
|
|
|
|
|
|
untrained = TinyByteTransformer(block_size=int(block_size)).to(device) |
|
|
before_seq = sample_bytes( |
|
|
untrained, start=start, steps=int(rollout_steps), |
|
|
device=device, temperature=float(temperature) |
|
|
) |
|
|
|
|
|
out_dir = os.path.dirname(bin_path) |
|
|
before_plot = os.path.join(out_dir, "rollout_before.png") |
|
|
plot_rollout_tracks(before_seq[-2*int(rollout_steps):], before_plot, title="BEFORE training (random)") |
|
|
|
|
|
|
|
|
model, losses, ppls = train_on_compressed( |
|
|
bin_path=bin_path, |
|
|
steps=int(train_steps), |
|
|
batch_size=int(batch_size), |
|
|
block_size=int(block_size), |
|
|
lr=float(lr), |
|
|
device=device, |
|
|
log_every=int(log_every), |
|
|
) |
|
|
STATE["model"] = model |
|
|
|
|
|
train_plot = os.path.join(out_dir, "training.png") |
|
|
plot_training_curves(losses, ppls, train_plot) |
|
|
|
|
|
|
|
|
after_seq = sample_bytes( |
|
|
model, start=start, steps=int(rollout_steps), |
|
|
device=device, temperature=float(temperature) |
|
|
) |
|
|
|
|
|
after_plot = os.path.join(out_dir, "rollout_after.png") |
|
|
plot_rollout_tracks(after_seq[-2*int(rollout_steps):], after_plot, title="AFTER training (trained model)") |
|
|
|
|
|
|
|
|
compare_plot = os.path.join(out_dir, "rollout_compare.png") |
|
|
plot_before_after_tracks( |
|
|
before_seq[-2*int(rollout_steps):], |
|
|
after_seq[-2*int(rollout_steps):], |
|
|
compare_plot |
|
|
) |
|
|
|
|
|
|
|
|
radial_edges = np.array(codec["radial_edges"], dtype=np.float32) |
|
|
gif_path = os.path.join(out_dir, "rollout.gif") |
|
|
make_rollout_gif( |
|
|
after_seq[-2*int(rollout_steps):], |
|
|
U=np.array(U, dtype=np.float32), |
|
|
radial_edges=radial_edges, |
|
|
out_path=gif_path, |
|
|
title="AFTER training — animated traversal in codec space", |
|
|
stride=int(gif_stride), |
|
|
fps=int(gif_fps), |
|
|
) |
|
|
|
|
|
final_md = ( |
|
|
f"## Training Complete (compressed-only)\n" |
|
|
f"- **Device:** `{device}`\n" |
|
|
f"- **Steps:** **{int(train_steps)}** (logged every {int(log_every)})\n" |
|
|
f"- **Final logged loss:** **{losses[-1]:.4f}**\n" |
|
|
f"- **Final logged perplexity:** **{ppls[-1]:.2f}**\n" |
|
|
f"\n### What investors should notice\n" |
|
|
f"1) The **perplexity falls** (learning on compressed bytes).\n" |
|
|
f"2) The **rollout changes** from noisy/random → structured.\n" |
|
|
f"3) The GIF shows the model **navigating constellation space**." |
|
|
) |
|
|
|
|
|
metrics = {"loss": losses, "ppl": ppls} |
|
|
return final_md, train_plot, compare_plot, gif_path, json.dumps(metrics, indent=2) |
|
|
except Exception as e: |
|
|
return f"Training error: {e}\n\n{traceback.format_exc()}", None, None, None, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
INTRO = """ |
|
|
# CHR Compressed-Only Learning (Investor Demo) |
|
|
This Space compresses text into a **binary stream** (`codes.bin`) and trains a tiny transformer **only** on that byte stream. |
|
|
|
|
|
**Investor wow features:** |
|
|
- Entropy curves + constellation map during compression |
|
|
- Training curves (loss + perplexity) |
|
|
- **BEFORE vs AFTER** rollout comparison |
|
|
- **Animated GIF** showing the model “moving” through codec space while generating compressed symbols |
|
|
""" |
|
|
|
|
|
with gr.Blocks(title="CHR Compressed-Only Learning (Investor Demo)") as demo: |
|
|
gr.Markdown(INTRO) |
|
|
|
|
|
with gr.Tab("1) Ingest"): |
|
|
with gr.Row(): |
|
|
file_in = gr.File(label="Upload .txt or .docx", file_types=[".txt", ".docx"]) |
|
|
units_mode = gr.Radio(["paragraphs", "sentences"], value="sentences", label="Unit granularity") |
|
|
with gr.Row(): |
|
|
ingest_btn = gr.Button("Load file", variant="primary") |
|
|
demo_btn = gr.Button("Load built-in demo corpus", variant="secondary") |
|
|
ingest_status = gr.Markdown("") |
|
|
|
|
|
ingest_btn.click(ingest_file, inputs=[file_in, units_mode], outputs=[ingest_status]) |
|
|
demo_btn.click(load_demo, inputs=[units_mode], outputs=[ingest_status]) |
|
|
|
|
|
with gr.Tab("2) Compress (CHR → codes.bin)"): |
|
|
with gr.Row(): |
|
|
K = gr.Slider(2, 48, value=16, step=1, label="K (constellations)") |
|
|
iters = gr.Slider(5, 120, value=40, step=1, label="CHR iterations") |
|
|
beta = gr.Slider(2, 30, value=16, step=1, label="beta (assignment sharpness)") |
|
|
with gr.Row(): |
|
|
slab_bins = gr.Slider(3, 16, value=8, step=1, label="slab bins (entropy measure)") |
|
|
tau = gr.Slider(1, 20, value=5, step=1, label="tau (slab softness)") |
|
|
radial_bins = gr.Slider(8, 256, value=64, step=8, label="radial bins (compression alphabet)") |
|
|
seed = gr.Slider(0, 9999, value=42, step=1, label="seed") |
|
|
|
|
|
compress_btn = gr.Button("Compress → generate codes.bin", variant="primary") |
|
|
compress_report = gr.Markdown("") |
|
|
with gr.Row(): |
|
|
ent_img = gr.Image(label="Entropy during compression", type="filepath") |
|
|
map_img = gr.Image(label="Constellation map (PCA)", type="filepath") |
|
|
with gr.Row(): |
|
|
bin_file = gr.File(label="codes.bin (compressed stream)") |
|
|
codec_file = gr.File(label="codec.json (metadata)") |
|
|
|
|
|
compress_btn.click( |
|
|
compress_now, |
|
|
inputs=[K, iters, beta, slab_bins, tau, seed, radial_bins], |
|
|
outputs=[compress_report, ent_img, map_img, bin_file, codec_file] |
|
|
) |
|
|
|
|
|
with gr.Tab("3) Train + Wow"): |
|
|
with gr.Row(): |
|
|
train_steps = gr.Slider(100, 6000, value=900, step=50, label="training steps") |
|
|
batch_size = gr.Slider(8, 256, value=64, step=8, label="batch size") |
|
|
block_size = gr.Slider(64, 512, value=256, step=32, label="sequence length (bytes)") |
|
|
with gr.Row(): |
|
|
lr = gr.Number(value=3e-4, label="learning rate") |
|
|
log_every = gr.Slider(10, 200, value=50, step=10, label="log every (steps)") |
|
|
temperature = gr.Slider(0.5, 2.0, value=1.0, step=0.05, label="rollout temperature") |
|
|
rollout_steps = gr.Slider(60, 800, value=240, step=20, label="rollout steps (bytes)") |
|
|
with gr.Row(): |
|
|
gif_stride = gr.Slider(1, 10, value=2, step=1, label="GIF stride (lower = smoother, heavier)") |
|
|
gif_fps = gr.Slider(6, 24, value=12, step=1, label="GIF FPS") |
|
|
|
|
|
train_btn = gr.Button("Train (compressed-only) + Generate visuals", variant="primary") |
|
|
train_report = gr.Markdown("") |
|
|
|
|
|
with gr.Row(): |
|
|
train_img = gr.Image(label="Loss + perplexity (compressed stream)", type="filepath") |
|
|
compare_img = gr.Image(label="BEFORE vs AFTER rollout comparison", type="filepath") |
|
|
with gr.Row(): |
|
|
gif_out = gr.Image(label="Animated rollout GIF (AFTER)", type="filepath") |
|
|
|
|
|
metrics_json = gr.Code(label="Metrics (JSON)", language="json") |
|
|
|
|
|
train_btn.click( |
|
|
train_now, |
|
|
inputs=[train_steps, batch_size, block_size, lr, log_every, temperature, rollout_steps, gif_stride, gif_fps], |
|
|
outputs=[train_report, train_img, compare_img, gif_out, metrics_json] |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|