Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -5,7 +5,6 @@ from peft import PeftModel
|
|
| 5 |
from PIL import Image
|
| 6 |
import requests
|
| 7 |
from io import BytesIO
|
| 8 |
-
import gc
|
| 9 |
|
| 10 |
model = None
|
| 11 |
processor = None
|
|
@@ -13,23 +12,19 @@ processor = None
|
|
| 13 |
def load_model():
|
| 14 |
global model, processor
|
| 15 |
if model is None:
|
| 16 |
-
print("Загружаю
|
| 17 |
-
gc.collect()
|
| 18 |
-
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 19 |
|
| 20 |
base_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 21 |
"Qwen/Qwen2.5-VL-7B-Instruct",
|
| 22 |
-
torch_dtype=torch.
|
| 23 |
device_map="auto",
|
| 24 |
-
trust_remote_code=True
|
| 25 |
-
attn_implementation="flash_attention_2"
|
| 26 |
)
|
| 27 |
|
| 28 |
-
print("Применяю LoRA
|
| 29 |
model = PeftModel.from_pretrained(
|
| 30 |
base_model,
|
| 31 |
-
"Stepan222/oem-fake-classifier-qwen2vl"
|
| 32 |
-
torch_dtype=torch.bfloat16
|
| 33 |
)
|
| 34 |
model.eval()
|
| 35 |
|
|
@@ -37,79 +32,52 @@ def load_model():
|
|
| 37 |
"Qwen/Qwen2.5-VL-7B-Instruct",
|
| 38 |
trust_remote_code=True
|
| 39 |
)
|
| 40 |
-
print("
|
| 41 |
return model, processor
|
| 42 |
|
| 43 |
def classify(image_url: str, title: str, description: str = ""):
|
| 44 |
try:
|
| 45 |
model, processor = load_model()
|
| 46 |
except Exception as e:
|
| 47 |
-
return f"Ошибка
|
| 48 |
|
| 49 |
try:
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
return "Введите URL изображения"
|
| 55 |
-
except Exception as e:
|
| 56 |
-
return f"Ошибка загрузки изображения: {e}"
|
| 57 |
|
| 58 |
text = f"Title: {title}"
|
| 59 |
if description:
|
| 60 |
text += f"\nDescription: {description}"
|
| 61 |
|
| 62 |
-
prompt = f"""Analyze this eBay
|
| 63 |
|
| 64 |
{text}
|
| 65 |
|
| 66 |
-
|
| 67 |
-
- OEM: [confidence]% - [brief reason]
|
| 68 |
-
- FAKE: [confidence]% - [brief reason]"""
|
| 69 |
|
| 70 |
-
messages = [
|
| 71 |
-
{
|
| 72 |
-
"role": "user",
|
| 73 |
-
"content": [
|
| 74 |
-
{"type": "image", "image": image},
|
| 75 |
-
{"type": "text", "text": prompt}
|
| 76 |
-
]
|
| 77 |
-
}
|
| 78 |
-
]
|
| 79 |
|
| 80 |
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 81 |
-
inputs = processor(
|
| 82 |
-
text=[text_input],
|
| 83 |
-
images=[image],
|
| 84 |
-
return_tensors="pt",
|
| 85 |
-
padding=True
|
| 86 |
-
).to(model.device)
|
| 87 |
|
| 88 |
with torch.no_grad():
|
| 89 |
-
|
| 90 |
-
**inputs,
|
| 91 |
-
max_new_tokens=100,
|
| 92 |
-
do_sample=False
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 96 |
-
if "assistant" in response.lower():
|
| 97 |
-
response = response.split("assistant")[-1].strip()
|
| 98 |
|
| 99 |
-
|
|
|
|
| 100 |
|
| 101 |
demo = gr.Interface(
|
| 102 |
fn=classify,
|
| 103 |
inputs=[
|
| 104 |
-
gr.Textbox(label="URL
|
| 105 |
-
gr.Textbox(label="
|
| 106 |
-
gr.Textbox(label="
|
| 107 |
],
|
| 108 |
-
outputs=gr.Textbox(label="
|
| 109 |
-
title="OEM/Fake Classifier
|
| 110 |
-
description="Классификатор автозапчастей. Space засыпает через 5 минут бездействия для экономии.",
|
| 111 |
allow_flagging="never"
|
| 112 |
)
|
| 113 |
|
| 114 |
-
|
| 115 |
-
demo.launch()
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
import requests
|
| 7 |
from io import BytesIO
|
|
|
|
| 8 |
|
| 9 |
model = None
|
| 10 |
processor = None
|
|
|
|
| 12 |
def load_model():
|
| 13 |
global model, processor
|
| 14 |
if model is None:
|
| 15 |
+
print("Загружаю модель...")
|
|
|
|
|
|
|
| 16 |
|
| 17 |
base_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 18 |
"Qwen/Qwen2.5-VL-7B-Instruct",
|
| 19 |
+
torch_dtype=torch.float16,
|
| 20 |
device_map="auto",
|
| 21 |
+
trust_remote_code=True
|
|
|
|
| 22 |
)
|
| 23 |
|
| 24 |
+
print("Применяю LoRA...")
|
| 25 |
model = PeftModel.from_pretrained(
|
| 26 |
base_model,
|
| 27 |
+
"Stepan222/oem-fake-classifier-qwen2vl"
|
|
|
|
| 28 |
)
|
| 29 |
model.eval()
|
| 30 |
|
|
|
|
| 32 |
"Qwen/Qwen2.5-VL-7B-Instruct",
|
| 33 |
trust_remote_code=True
|
| 34 |
)
|
| 35 |
+
print("Модель готова!")
|
| 36 |
return model, processor
|
| 37 |
|
| 38 |
def classify(image_url: str, title: str, description: str = ""):
|
| 39 |
try:
|
| 40 |
model, processor = load_model()
|
| 41 |
except Exception as e:
|
| 42 |
+
return f"Ошибка модели: {e}"
|
| 43 |
|
| 44 |
try:
|
| 45 |
+
response = requests.get(image_url, timeout=10)
|
| 46 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 47 |
+
except:
|
| 48 |
+
return "Не удалось загрузить изображение"
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
text = f"Title: {title}"
|
| 51 |
if description:
|
| 52 |
text += f"\nDescription: {description}"
|
| 53 |
|
| 54 |
+
prompt = f"""Analyze this eBay auto part listing. Is it OEM (original) or FAKE (aftermarket)?
|
| 55 |
|
| 56 |
{text}
|
| 57 |
|
| 58 |
+
Reply: OEM or FAKE with confidence % and reason."""
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 63 |
+
inputs = processor(text=[text_input], images=[image], return_tensors="pt", padding=True).to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
with torch.no_grad():
|
| 66 |
+
out = model.generate(**inputs, max_new_tokens=80, do_sample=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
resp = processor.batch_decode(out, skip_special_tokens=True)[0]
|
| 69 |
+
return resp.split("assistant")[-1].strip() if "assistant" in resp.lower() else resp
|
| 70 |
|
| 71 |
demo = gr.Interface(
|
| 72 |
fn=classify,
|
| 73 |
inputs=[
|
| 74 |
+
gr.Textbox(label="Image URL"),
|
| 75 |
+
gr.Textbox(label="Title"),
|
| 76 |
+
gr.Textbox(label="Description")
|
| 77 |
],
|
| 78 |
+
outputs=gr.Textbox(label="Result"),
|
| 79 |
+
title="OEM/Fake Classifier",
|
|
|
|
| 80 |
allow_flagging="never"
|
| 81 |
)
|
| 82 |
|
| 83 |
+
demo.launch()
|
|
|