Speed up
Browse files
app.py
CHANGED
|
@@ -1,21 +1,18 @@
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
| 3 |
-
import csv
|
| 4 |
-
import math
|
| 5 |
import torch
|
| 6 |
import tempfile
|
| 7 |
-
import os
|
| 8 |
import gradio as gr
|
| 9 |
import time
|
| 10 |
import io
|
| 11 |
from contextlib import redirect_stdout
|
| 12 |
-
import concurrent.futures
|
| 13 |
|
| 14 |
-
# Set up device for torch
|
| 15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
print(f"[INFO] Using device: {device}")
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
try:
|
| 20 |
print("[INFO] Attempting to load RAFT model from torch.hub...")
|
| 21 |
raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
|
|
@@ -28,248 +25,203 @@ except Exception as e:
|
|
| 28 |
raft_model = None
|
| 29 |
gr.Warning("Falling back to OpenCV Farneback optical flow.")
|
| 30 |
|
| 31 |
-
def
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
cap = cv2.VideoCapture(video_file)
|
| 39 |
if not cap.isOpened():
|
| 40 |
-
raise gr.Error("Could not open video file for
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
while True:
|
| 58 |
ret, frame = cap.read()
|
| 59 |
if not ret:
|
| 60 |
break
|
| 61 |
-
compressed_frame = cv2.resize(frame, (new_width, new_height))
|
| 62 |
-
out.write(compressed_frame)
|
| 63 |
-
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
| 64 |
-
print(f"[INFO] Compressed frame {frame_idx}/{total_frames}")
|
| 65 |
-
progress(progress_offset + (frame_idx / total_frames) * progress_scale, desc="Compressing Video")
|
| 66 |
-
frame_idx += 1
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
elapsed = time.time() - start_time
|
| 71 |
-
print(f"[INFO] Compressed video saved to: {output_file} in {elapsed:.2f} seconds")
|
| 72 |
-
return output_file
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
if not cap.isOpened():
|
| 88 |
-
raise gr.Error("Could not open video file for CSV generation.")
|
| 89 |
-
|
| 90 |
-
print(f"[INFO] Generating motion CSV for video: {video_file}")
|
| 91 |
-
with open(output_csv, 'w', newline='') as csvfile:
|
| 92 |
-
fieldnames = ['frame', 'mag', 'ang', 'zoom']
|
| 93 |
-
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
| 94 |
-
writer.writeheader()
|
| 95 |
-
|
| 96 |
-
ret, first_frame = cap.read()
|
| 97 |
-
if not ret:
|
| 98 |
-
raise gr.Error("Cannot read first frame from video.")
|
| 99 |
-
|
| 100 |
-
if raft_model is not None:
|
| 101 |
-
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
| 102 |
-
prev_tensor = torch.from_numpy(first_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
| 103 |
-
prev_tensor = prev_tensor.to(device)
|
| 104 |
-
print("[INFO] Using RAFT model for optical flow computation.")
|
| 105 |
else:
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
median_ang = np.median(ang)
|
| 135 |
-
|
| 136 |
-
h, w = flow.shape[:2]
|
| 137 |
-
center_x, center_y = w / 2, h / 2
|
| 138 |
-
x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
|
| 139 |
-
x_offset = x_coords - center_x
|
| 140 |
-
y_offset = y_coords - center_y
|
| 141 |
-
dot = flow[..., 0] * x_offset + flow[..., 1] * y_offset
|
| 142 |
-
zoom_factor = np.count_nonzero(dot > 0) / (w * h)
|
| 143 |
-
|
| 144 |
-
writer.writerow({
|
| 145 |
-
'frame': frame_idx,
|
| 146 |
-
'mag': median_mag,
|
| 147 |
-
'ang': median_ang,
|
| 148 |
-
'zoom': zoom_factor
|
| 149 |
-
})
|
| 150 |
-
|
| 151 |
-
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
| 152 |
-
print(f"[INFO] Processed frame {frame_idx}/{total_frames}")
|
| 153 |
-
|
| 154 |
-
progress(progress_offset + (frame_idx / total_frames) * progress_scale, desc="Generating Motion CSV")
|
| 155 |
-
frame_idx += 1
|
| 156 |
|
| 157 |
cap.release()
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
Processes a single frame for stabilization.
|
| 189 |
-
Applies translation by dx, dy (if not vertical_only), and scaling by zoom.
|
| 190 |
-
Uses cv2.BORDER_REPLICATE to avoid black borders.
|
| 191 |
-
"""
|
| 192 |
-
if vertical_only:
|
| 193 |
-
dx = 0
|
| 194 |
-
# Create transformation matrix: translation + scaling
|
| 195 |
-
center = (width / 2, height / 2)
|
| 196 |
-
M = cv2.getRotationMatrix2D(center, 0, zoom)
|
| 197 |
-
M[0, 2] += dx
|
| 198 |
-
M[1, 2] += dy
|
| 199 |
-
stabilized_frame = cv2.warpAffine(frame, M, (width, height), borderMode=cv2.BORDER_REPLICATE)
|
| 200 |
-
return stabilized_frame
|
| 201 |
-
|
| 202 |
-
def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, vertical_only=False,
|
| 203 |
-
progress=gr.Progress(), progress_offset=0.6, progress_scale=0.4,
|
| 204 |
-
output_file=None):
|
| 205 |
-
"""
|
| 206 |
-
Stabilizes the video using motion data from the CSV.
|
| 207 |
-
If vertical_only is True, only vertical motion is corrected.
|
| 208 |
-
Updates progress from progress_offset to progress_offset+progress_scale.
|
| 209 |
-
Uses cv2.BORDER_REPLICATE to fill any gaps, preventing black borders.
|
| 210 |
-
"""
|
| 211 |
-
start_time = time.time()
|
| 212 |
-
print(f"[INFO] Starting stabilization using CSV: {csv_file}")
|
| 213 |
-
motion_data = read_motion_csv(csv_file)
|
| 214 |
-
|
| 215 |
cap = cv2.VideoCapture(video_file)
|
| 216 |
if not cap.isOpened():
|
| 217 |
raise gr.Error("Could not open video file for stabilization.")
|
| 218 |
-
|
| 219 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
if output_file is None:
|
| 225 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=
|
| 226 |
output_file = temp_file.name
|
| 227 |
temp_file.close()
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
ret, frame = cap.read()
|
| 232 |
if not ret:
|
| 233 |
break
|
| 234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
cap.release()
|
| 236 |
-
total_frames = len(frames)
|
| 237 |
-
print(f"[INFO] Total frames to stabilize: {total_frames}")
|
| 238 |
-
# Use threads to avoid multiprocessing pickling issues on Windows/Gradio.
|
| 239 |
-
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 240 |
-
dx_list = [motion_data.get(i+1, (0, 0))[0] for i in range(len(frames))]
|
| 241 |
-
dy_list = [motion_data.get(i+1, (0, 0))[1] for i in range(len(frames))]
|
| 242 |
-
zoom_list = [zoom] * len(frames)
|
| 243 |
-
vertical_list = [vertical_only] * len(frames)
|
| 244 |
-
width_list = [width] * len(frames)
|
| 245 |
-
height_list = [height] * len(frames)
|
| 246 |
-
stabilized_frames = list(executor.map(process_frame, frames, dx_list, dy_list, zoom_list, vertical_list, width_list, height_list))
|
| 247 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 248 |
-
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
|
| 249 |
-
for idx, stabilized_frame in enumerate(stabilized_frames):
|
| 250 |
-
out.write(stabilized_frame)
|
| 251 |
-
frame_idx = idx + 1
|
| 252 |
-
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
| 253 |
-
print(f"[INFO] Stabilized frame {frame_idx}/{total_frames}")
|
| 254 |
-
|
| 255 |
-
progress(progress_offset + (frame_idx / total_frames) * progress_scale, desc="Stabilizing Video")
|
| 256 |
out.release()
|
| 257 |
-
elapsed = time.time() - start_time
|
| 258 |
-
print(f"[INFO] Stabilized video saved to: {output_file} in {elapsed:.2f} seconds")
|
| 259 |
return output_file
|
| 260 |
|
| 261 |
-
def process_video_ai(
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
Tuple: (original video file path, stabilized video file path, log output)
|
| 272 |
-
"""
|
| 273 |
gr.Info("Starting AI-powered video processing...")
|
| 274 |
log_buffer = io.StringIO()
|
| 275 |
with redirect_stdout(log_buffer):
|
|
@@ -277,82 +229,32 @@ def process_video_ai(video_file, zoom, vertical_only, compress_mode, target_widt
|
|
| 277 |
video_file = video_file.get("name", None)
|
| 278 |
if video_file is None:
|
| 279 |
raise gr.Error("Please upload a video file.")
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
if compress_mode:
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
gr.Info("Video compression complete.")
|
| 286 |
-
motion_offset = 0.2
|
| 287 |
-
motion_scale = 0.4
|
| 288 |
-
stabilization_offset = 0.6
|
| 289 |
-
stabilization_scale = 0.4
|
| 290 |
else:
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
if auto_zoom:
|
| 301 |
-
|
| 302 |
-
motion_data = read_motion_csv(csv_file)
|
| 303 |
-
# Compute separate left/right and top/bottom displacements.
|
| 304 |
-
left_disp = abs(min(v[0] for v in motion_data.values()))
|
| 305 |
-
right_disp = max(v[0] for v in motion_data.values())
|
| 306 |
-
top_disp = abs(min(v[1] for v in motion_data.values()))
|
| 307 |
-
bottom_disp = max(v[1] for v in motion_data.values())
|
| 308 |
-
cap = cv2.VideoCapture(video_file)
|
| 309 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 310 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 311 |
-
cap.release()
|
| 312 |
-
safe_width = width - (left_disp + right_disp)
|
| 313 |
-
safe_height = height - (top_disp + bottom_disp)
|
| 314 |
-
zoom_x = width / safe_width if safe_width > 0 else 1.0
|
| 315 |
-
zoom_y = height / safe_height if safe_height > 0 else 1.0
|
| 316 |
-
auto_zoom_factor = max(1.0, zoom_x, zoom_y)
|
| 317 |
-
gr.Info(f"Auto zoom factor computed: {auto_zoom_factor:.2f}")
|
| 318 |
-
zoom = auto_zoom_factor
|
| 319 |
-
|
| 320 |
-
stabilized_path = stabilize_video_using_csv(video_file, csv_file, zoom=zoom, vertical_only=vertical_only,
|
| 321 |
-
progress=progress, progress_offset=stabilization_offset, progress_scale=stabilization_scale)
|
| 322 |
-
gr.Info("Video stabilization complete.")
|
| 323 |
-
print("[INFO] Video processing complete.")
|
| 324 |
-
logs = log_buffer.getvalue()
|
| 325 |
-
return video_file, stabilized_path, logs
|
| 326 |
-
|
| 327 |
-
# Build the Gradio UI.
|
| 328 |
-
with gr.Blocks() as demo:
|
| 329 |
-
gr.Markdown("# AI-Powered Video Stabilization")
|
| 330 |
-
gr.Markdown(
|
| 331 |
-
"Upload a video, select a zoom factor (or use Auto Zoom Mode), choose whether to apply only vertical stabilization, and optionally compress the video before processing. "
|
| 332 |
-
"If compressing, specify the target resolution (width and height) for the compressed video. "
|
| 333 |
-
"The system will generate motion data using an AI model (RAFT if available) and then stabilize the video with live progress updates and alerts."
|
| 334 |
-
)
|
| 335 |
-
|
| 336 |
-
with gr.Row():
|
| 337 |
-
with gr.Column():
|
| 338 |
-
video_input = gr.Video(label="Input Video")
|
| 339 |
-
zoom_slider = gr.Slider(minimum=1.0, maximum=3.0, step=0.1, value=1.0, label="Zoom Factor (ignored if Auto Zoom enabled)")
|
| 340 |
-
auto_zoom_checkbox = gr.Checkbox(label="Auto Zoom Mode", value=False)
|
| 341 |
-
vertical_checkbox = gr.Checkbox(label="Vertical Stabilization Only", value=False)
|
| 342 |
-
compress_checkbox = gr.Checkbox(label="Compress Video Before Processing", value=False)
|
| 343 |
-
target_width = gr.Number(label="Target Width (px)", value=640)
|
| 344 |
-
target_height = gr.Number(label="Target Height (px)", value=360)
|
| 345 |
-
process_button = gr.Button("Process Video")
|
| 346 |
-
with gr.Column():
|
| 347 |
-
original_video = gr.Video(label="Original Video")
|
| 348 |
-
stabilized_video = gr.Video(label="Stabilized Video")
|
| 349 |
-
logs_output = gr.Textbox(label="Logs", lines=10)
|
| 350 |
-
|
| 351 |
-
process_button.click(
|
| 352 |
-
fn=process_video_ai,
|
| 353 |
-
inputs=[video_input, zoom_slider, vertical_checkbox, compress_checkbox, target_width, target_height, auto_zoom_checkbox],
|
| 354 |
-
outputs=[original_video, stabilized_video, logs_output]
|
| 355 |
-
)
|
| 356 |
-
|
| 357 |
-
if __name__ == "__main__":
|
| 358 |
-
demo.launch()
|
|
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
import tempfile
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import time
|
| 7 |
import io
|
| 8 |
from contextlib import redirect_stdout
|
|
|
|
| 9 |
|
|
|
|
| 10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
print(f"[INFO] Using device: {device}")
|
| 12 |
|
| 13 |
+
if device.type == "cuda":
|
| 14 |
+
torch.backends.cudnn.benchmark = True
|
| 15 |
+
|
| 16 |
try:
|
| 17 |
print("[INFO] Attempting to load RAFT model from torch.hub...")
|
| 18 |
raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
|
|
|
|
| 25 |
raft_model = None
|
| 26 |
gr.Warning("Falling back to OpenCV Farneback optical flow.")
|
| 27 |
|
| 28 |
+
def _resize(frame, w, h):
|
| 29 |
+
if frame.shape[1] == w and frame.shape[0] == h:
|
| 30 |
+
return frame
|
| 31 |
+
return cv2.resize(frame, (w, h), interpolation=cv2.INTER_AREA if (w < frame.shape[1] or h < frame.shape[0]) else cv2.INTER_LINEAR)
|
| 32 |
+
|
| 33 |
+
def _frame_to_raft_tensor_bgr(frame_bgr):
|
| 34 |
+
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
|
| 35 |
+
t = torch.from_numpy(frame_rgb).permute(2, 0, 1).contiguous().float().unsqueeze(0).div_(255.0)
|
| 36 |
+
return t.to(device, non_blocking=(device.type == "cuda"))
|
| 37 |
+
|
| 38 |
+
def compute_offsets(
|
| 39 |
+
video_file,
|
| 40 |
+
out_w,
|
| 41 |
+
out_h,
|
| 42 |
+
motion_scale=0.5,
|
| 43 |
+
raft_iters=12,
|
| 44 |
+
progress=gr.Progress(),
|
| 45 |
+
progress_offset=0.0,
|
| 46 |
+
progress_scale=0.55,
|
| 47 |
+
):
|
| 48 |
cap = cv2.VideoCapture(video_file)
|
| 49 |
if not cap.isOpened():
|
| 50 |
+
raise gr.Error("Could not open video file for motion estimation.")
|
| 51 |
+
|
| 52 |
+
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 0
|
| 53 |
+
|
| 54 |
+
mw = max(64, int(out_w * float(motion_scale)))
|
| 55 |
+
mh = max(64, int(out_h * float(motion_scale)))
|
| 56 |
+
sx = float(out_w) / float(mw)
|
| 57 |
+
sy = float(out_h) / float(mh)
|
| 58 |
+
|
| 59 |
+
ret, prev = cap.read()
|
| 60 |
+
if not ret:
|
| 61 |
+
cap.release()
|
| 62 |
+
raise gr.Error("Cannot read first frame from video.")
|
| 63 |
+
|
| 64 |
+
prev_out = _resize(prev, out_w, out_h)
|
| 65 |
+
prev_small = _resize(prev_out, mw, mh)
|
| 66 |
+
|
| 67 |
+
use_raft = raft_model is not None
|
| 68 |
+
use_amp = device.type == "cuda"
|
| 69 |
+
|
| 70 |
+
if use_raft:
|
| 71 |
+
prev_t = _frame_to_raft_tensor_bgr(prev_small)
|
| 72 |
+
else:
|
| 73 |
+
prev_g = cv2.cvtColor(prev_small, cv2.COLOR_BGR2GRAY)
|
| 74 |
+
|
| 75 |
+
offsets = [(0.0, 0.0)]
|
| 76 |
+
cum_dx = 0.0
|
| 77 |
+
cum_dy = 0.0
|
| 78 |
+
|
| 79 |
+
idx = 1
|
| 80 |
while True:
|
| 81 |
ret, frame = cap.read()
|
| 82 |
if not ret:
|
| 83 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
frame_out = _resize(frame, out_w, out_h)
|
| 86 |
+
curr_small = _resize(frame_out, mw, mh)
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
if use_raft:
|
| 89 |
+
curr_t = _frame_to_raft_tensor_bgr(curr_small)
|
| 90 |
+
with torch.no_grad():
|
| 91 |
+
if use_amp:
|
| 92 |
+
with torch.cuda.amp.autocast(True):
|
| 93 |
+
_, flow_up = raft_model(prev_t, curr_t, iters=int(raft_iters), test_mode=True)
|
| 94 |
+
else:
|
| 95 |
+
_, flow_up = raft_model(prev_t, curr_t, iters=int(raft_iters), test_mode=True)
|
| 96 |
+
|
| 97 |
+
flow = flow_up[0]
|
| 98 |
+
dx = float(flow[0].median().item())
|
| 99 |
+
dy = float(flow[1].median().item())
|
| 100 |
+
prev_t = curr_t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
else:
|
| 102 |
+
curr_g = cv2.cvtColor(curr_small, cv2.COLOR_BGR2GRAY)
|
| 103 |
+
flow = cv2.calcOpticalFlowFarneback(
|
| 104 |
+
prev_g,
|
| 105 |
+
curr_g,
|
| 106 |
+
None,
|
| 107 |
+
pyr_scale=0.5,
|
| 108 |
+
levels=3,
|
| 109 |
+
winsize=15,
|
| 110 |
+
iterations=3,
|
| 111 |
+
poly_n=5,
|
| 112 |
+
poly_sigma=1.2,
|
| 113 |
+
flags=0,
|
| 114 |
+
)
|
| 115 |
+
dx = float(np.median(flow[..., 0]))
|
| 116 |
+
dy = float(np.median(flow[..., 1]))
|
| 117 |
+
prev_g = curr_g
|
| 118 |
+
|
| 119 |
+
dx *= sx
|
| 120 |
+
dy *= sy
|
| 121 |
+
|
| 122 |
+
cum_dx += dx
|
| 123 |
+
cum_dy += dy
|
| 124 |
+
offsets.append((-cum_dx, -cum_dy))
|
| 125 |
+
|
| 126 |
+
if total > 0 and (idx % 5 == 0 or idx == total - 1):
|
| 127 |
+
progress(progress_offset + (idx / max(1, total - 1)) * progress_scale, desc="Estimating Motion")
|
| 128 |
+
|
| 129 |
+
idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
cap.release()
|
| 132 |
+
return offsets
|
| 133 |
+
|
| 134 |
+
def compute_auto_zoom(offsets, width, height):
|
| 135 |
+
dxs = [o[0] for o in offsets] or [0.0]
|
| 136 |
+
dys = [o[1] for o in offsets] or [0.0]
|
| 137 |
+
|
| 138 |
+
left = max(0.0, -min(dxs))
|
| 139 |
+
right = max(0.0, max(dxs))
|
| 140 |
+
top = max(0.0, -min(dys))
|
| 141 |
+
bottom = max(0.0, max(dys))
|
| 142 |
+
|
| 143 |
+
safe_w = float(width) - (left + right)
|
| 144 |
+
safe_h = float(height) - (top + bottom)
|
| 145 |
+
|
| 146 |
+
zx = (float(width) / safe_w) if safe_w > 1.0 else 1.0
|
| 147 |
+
zy = (float(height) / safe_h) if safe_h > 1.0 else 1.0
|
| 148 |
+
return max(1.0, zx, zy)
|
| 149 |
+
|
| 150 |
+
def stabilize_stream(
|
| 151 |
+
video_file,
|
| 152 |
+
offsets,
|
| 153 |
+
zoom=1.0,
|
| 154 |
+
vertical_only=False,
|
| 155 |
+
out_w=None,
|
| 156 |
+
out_h=None,
|
| 157 |
+
progress=gr.Progress(),
|
| 158 |
+
progress_offset=0.55,
|
| 159 |
+
progress_scale=0.45,
|
| 160 |
+
output_file=None,
|
| 161 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
cap = cv2.VideoCapture(video_file)
|
| 163 |
if not cap.isOpened():
|
| 164 |
raise gr.Error("Could not open video file for stabilization.")
|
| 165 |
+
|
| 166 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 167 |
+
in_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 168 |
+
in_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 169 |
+
|
| 170 |
+
if out_w is None:
|
| 171 |
+
out_w = in_w
|
| 172 |
+
if out_h is None:
|
| 173 |
+
out_h = in_h
|
| 174 |
+
|
| 175 |
if output_file is None:
|
| 176 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
| 177 |
output_file = temp_file.name
|
| 178 |
temp_file.close()
|
| 179 |
+
|
| 180 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 181 |
+
out = cv2.VideoWriter(output_file, fourcc, fps, (int(out_w), int(out_h)))
|
| 182 |
+
|
| 183 |
+
center = (float(out_w) / 2.0, float(out_h) / 2.0)
|
| 184 |
+
base = cv2.getRotationMatrix2D(center, 0.0, float(zoom))
|
| 185 |
+
|
| 186 |
+
total = len(offsets)
|
| 187 |
+
i = 0
|
| 188 |
+
while i < total:
|
| 189 |
ret, frame = cap.read()
|
| 190 |
if not ret:
|
| 191 |
break
|
| 192 |
+
|
| 193 |
+
frame_out = _resize(frame, int(out_w), int(out_h))
|
| 194 |
+
|
| 195 |
+
dx, dy = offsets[i]
|
| 196 |
+
if vertical_only:
|
| 197 |
+
dx = 0.0
|
| 198 |
+
|
| 199 |
+
M = base.copy()
|
| 200 |
+
M[0, 2] += float(dx)
|
| 201 |
+
M[1, 2] += float(dy)
|
| 202 |
+
|
| 203 |
+
stabilized = cv2.warpAffine(frame_out, M, (int(out_w), int(out_h)), borderMode=cv2.BORDER_REPLICATE)
|
| 204 |
+
out.write(stabilized)
|
| 205 |
+
|
| 206 |
+
if total > 0 and (i % 5 == 0 or i == total - 1):
|
| 207 |
+
progress(progress_offset + (i / max(1, total - 1)) * progress_scale, desc="Stabilizing Video")
|
| 208 |
+
|
| 209 |
+
i += 1
|
| 210 |
+
|
| 211 |
cap.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
out.release()
|
|
|
|
|
|
|
| 213 |
return output_file
|
| 214 |
|
| 215 |
+
def process_video_ai(
|
| 216 |
+
video_file,
|
| 217 |
+
zoom,
|
| 218 |
+
vertical_only,
|
| 219 |
+
compress_mode,
|
| 220 |
+
target_width,
|
| 221 |
+
target_height,
|
| 222 |
+
auto_zoom,
|
| 223 |
+
progress=gr.Progress(track_tqdm=True),
|
| 224 |
+
):
|
|
|
|
|
|
|
| 225 |
gr.Info("Starting AI-powered video processing...")
|
| 226 |
log_buffer = io.StringIO()
|
| 227 |
with redirect_stdout(log_buffer):
|
|
|
|
| 229 |
video_file = video_file.get("name", None)
|
| 230 |
if video_file is None:
|
| 231 |
raise gr.Error("Please upload a video file.")
|
| 232 |
+
|
| 233 |
+
cap = cv2.VideoCapture(video_file)
|
| 234 |
+
if not cap.isOpened():
|
| 235 |
+
raise gr.Error("Could not open uploaded video.")
|
| 236 |
+
in_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 237 |
+
in_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 238 |
+
cap.release()
|
| 239 |
+
|
| 240 |
if compress_mode:
|
| 241 |
+
out_w = int(target_width)
|
| 242 |
+
out_h = int(target_height)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
else:
|
| 244 |
+
out_w = in_w
|
| 245 |
+
out_h = in_h
|
| 246 |
+
|
| 247 |
+
offsets = compute_offsets(
|
| 248 |
+
video_file,
|
| 249 |
+
out_w,
|
| 250 |
+
out_h,
|
| 251 |
+
motion_scale=0.5,
|
| 252 |
+
raft_iters=12,
|
| 253 |
+
progress=progress,
|
| 254 |
+
progress_offset=0.0,
|
| 255 |
+
progress_scale=0.55,
|
| 256 |
+
)
|
| 257 |
+
gr.Info("Motion estimated successfully.")
|
| 258 |
+
|
| 259 |
if auto_zoom:
|
| 260 |
+
z = compute_auto_zoom(offsets, out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|